Permit Fact Sheet

General Information

Permit Number	WI-0020443-10-0				
Permittee Name and	City of Brillion				
Mailing Address	130 Calumet St, Brillion, WI 54110				
Permitted Facility	Brillion Wastewater Treatment Facility				
Name and Address	1201 Clearwater Dr, Brillion, WI 54110				
Permit Term	July 01, 2025 to June 30, 2030				
Discharge Location	NW ¼ of Section 35, T 20N, R 20E in Calumet County (approximately at latitude 44° 9' 53" North and longitude 88° 4' 49" West)				
Receiving Water	An unnamed tributary (WBIC no. 77100) to Spring Creek, in the North Branch Manitowoc River Watershed (MA04) of the Manitowoc River Basin in Calumet County				
Stream Flow (Q _{7,10})	0.05 cfs				
Stream Classification	Warmwater Sport Fish (WWSF), non-public water supply				
Discharge Type	Existing; Continuous				
Annual Average Design Flow	0.824 MGD				
Industrial or Commercial Contributors	Professional Plating; Ariens Company				
Plant Classification	Advanced: A1 - Suspended Growth Processes; B - Solids Separation; C - Biological Solids/Sludges; P - Total Phosphorus; and Basic: SS - Sanitary Sewage Collection System				
Approved Pretreatment Program?	N/A				

Facility Description

The City of Brillion owns and operates the Brillion Wastewater Treatment Facility that treats residential, industrial, and commercial domestic wastewater from the City sanitary sewer collection system. All sludge generated from the treatment facility is stored in a reed bed system and eventually removed and hauled to a landfill. The paragraphs below describe the liquid and solids treatment train of the Brillion Wastewater Treatment Facility.

Liquid Treatment Train: The raw influent wastewater from the City of Brillion flows to four lift stations. Then three of these lift stations pump the wastewater to an influent channel in the headworks building. At the headworks, the influent passes through a vortex grit removal system. The removed grit is conveyed to a grit chamber to settle the grit. The decant water is conveyed back to the influent channel. The grit chamber is manually vacuumed out and the grit is disposed to a dumpster. The influent then passes through a cylindrical mechanical fine screen and bar screen. The screenings are disposed to a dumpster. There is a bypass channel with a manual bar screen. The influent then passes through a Parshall flume with an ultrasonic flow meter measuring the influent flow where influent composite samples are collected by an automatic sampler via Sampling Point 701. The influent then flows to a splitter box for the primary clarifiers. Following the headworks, the flow is split between two 30-ft diameter primary clarifiers operating in parallel. The splitter box was recently equipped with overflow pipes to the primary clarifiers to provide some relief during wet weather peak flows that

may exceed the design flows of the pipes to the primary clarifiers. The primary clarified wastewater then flows to a splitter box for the aeration basins. After the primary clarifiers, the flow is split between two 60-ft x 20-ft aeration basins operating in parallel. The aeration basins contain fine bubble tube diffusers. Air is supplied to the aeration basins by three large centrifugal blowers. Ferric chloride is dosed to the center of the aeration basins. The mixed liquor then flows to a splitter box for the secondary clarifiers. Following the aeration basins, the flow is split between two 30-ft diameter secondary clarifiers operating in parallel. The secondary effluent is then sent to a diversion channel. At the diversion channel, during normal flow conditions, the effluent is lifted by two screw pumps and split between a set of four tertiary sand filter beds. During high flow conditions, the effluent can bypass the screw pumps and tertiary filters to the former chlorination/dechlorination contact chamber via Sampling Point 101. The final effluent then passes through a pipe where the effluent flow rate is measured by a magnetic flow meter where effluent composite samples are collected by an automatic sampler via Sampling Point 001. The final effluent then flows by gravity to the former chlorination/dechlorination contact chamber. The former contact chamber is provided with coarse bubble diffusers at the end of the tank prior to being conveyed by gravity to an unnamed tributary to Spring Creek via Outfall 001.

Solids Treatment Train: Primary and waste activated sludges are sent to either a 40-ft x 20-ft or a 20-ft x 8-ft aerobic digestor operating in parallel. The aerobic digestors contain coarse bubble diffusers. Air is supplied by three large centrifugal blowers which also supply air to the aeration basins. The aerobic digested sludge is then pumped and feed into nine 4,680 square feet reed beds used for solids dewatering and sludge storage. The reed beds contain a perforated drain tile which is drained back to the filter backwash pit and pumped to the head of the primary clarifiers' splitter box. The reeds in the beds are cut and burned every year. The current reed beds have an approximate total storage capacity of 5 to 10-years, until such time the biosolids must be emptied and hauled to a landfill. The reed bed sludge is tracked under Outfall 007. The facility does have the ability to land apply or haul the reed bed feed sludge from the aerobic digestors in case storage in the reed beds is not available under Outfall 006.

Facility Upgrades: During the permit term, the facility proposes to upgrade the wastewater treatment facility. The proposed upgrades include replacing the three influent pumps at the main lift station, moving influent sampling and flow monitoring equipment prior to headworks, installing new fine screening and grit removal equipment, replacement of primary clarifiers to anoxic/anaerobic selector basins, rehab of existing aeration basins and installing two new aeration basins, rehab of existing final clarifiers and installing two new final clarifiers, replacing screw pumps and installing a third screw pump, replacing sand filters with cloth media disk filters, moving effluent sampling and flow monitoring to after the tertiary filtration bypass, and rehab of aerobic digestor tanks and installing two new digestor tanks.

Substantial Compliance Determination

Enforcement During Last Permit: There have been violations of effluent limits, missed samples, late reporting, and SSOs/TFOs. Several Notices of Noncompliance (NONs) have been sent to the facility during the previous permit term. The effluent limits that were exceeded are: monthly average phosphorus limit in October 2018 and October 2021; daily maximum limit for pH in October 2020; weekly average and monthly average ammonia limits in April 2020; and chloride interim weekly average limit in April 2019. Additionally, the facility has had at least six treatment facility overflows (TFOs) and sanitary sewer overflows (SSOs), as well as several tertiary filter bypasses during the previous permit term.

The facility has completed all previously required actions as part of the enforcement process.

After a desk top review of all discharge monitoring reports, compliance maintenance annual reports (CMARs), land application reports, compliance schedule items, and a site visit on 5/10/23, this facility has been found to be in substantial compliance with their current permit.

Compliance determination made by Trevor Moen, Wastewater Engineer on January 13, 2025.

Sample Point Descriptions

Sample Point Designation				
Sample Point Number	Discharge Flow, Units, and Averaging Period	Sample Point Location, Waste Type/Sample Contents and Treatment Description (as applicable)		
701	0.861 MGD (Avg. 7/1/18-12/31/24)	INFLUENT - At Sampling Point 701, the permittee shall collect representative samples of the influent from the influent automatic sampler drawing 24-hour flow proportional composite samples from the influent channel after grit removal, fine screening, and influent flow monitoring. The permittee shall measure the influent flow rate using a continuous flow recording device on the influent channel after grit removal and fine screening prior to the primary clarifiers. Once the facility upgrades are complete, at Sampling Point 701, the permittee shall collect representative samples of the influent from the influent automatic sampler drawing 24-hour flow proportional composite samples from the influent channel prior to fine screening and grit removal. The permittee shall measure the influent flow rate using a continuous flow recording device on the force main from the main lift station to the influent channel.		
101	N/A – new sample point	OTHER BYPASS - At Sampling Point 101, the permittee shall report the diverted flow which bypasses the tertiary filtration system during high flow events.		
001	0.605 MGD (Avg. 7/1/18-12/31/24)	EFFLUENT - At Sampling Point 001, the permittee shall collect representative samples of the final effluent from the effluent automatic composite sampler drawing 24-hour flow proportional composite samples from the pipe following the tertiary filtration system except that the permittee shall collect grab samples of the effluent for pH, dissolved oxygen, temperature, PFOA, and PFOS from the end of the former chlorination/dechlorination contact chamber after post-aeration and prior to being discharged to the Unnamed Tributary to Spring Creek via Outfall 001. The permittee shall measure the effluent flow rate using a continuous flow recording device on the pipe following the tertiary filtration system. Once the disinfection system has been installed per the Disinfection and Effluent Limitations for E. coli Compliance Schedule, the permittee shall collect representative grab samples for E. coli, pH, dissolved oxygen, temperature, PFOA, and PFOS after the disinfection system and post-aeration and prior to being discharged to the Unnamed Tributary to Spring Creek via Outfall 001. During tertiary filtration bypass events until facility upgrades are complete, the permittee shall collect representative samples of effluent from an automatic composite sampler drawing 24-hour time proportional composites from the end of the former chlorination/dechlorination contact chamber prior to being discharged to the Unnamed Tributary to Spring Creek via Outfall 001.		
006	N/A - did not land apply or landfill sludge (2018-2024)	REED BED FEED SLUDGE - Class B Liquid sludge that has been aerobically digested and fed into the reed beds. At Sampling Point		

	Sample Point Designation						
Sample Point Number	Discharge Flow, Units, and Averaging Period	Sample Point Location, Waste Type/Sample Contents and Treatment Description (as applicable)					
		006, the permittee shall collect representative composite samples of the reed bed feed sludge prior to being land applied on department approved sites via Outfall 006. This outfall has been included for emergency use in case storage in the reed beds is not available.					
007	961 Metric Tons (Avg. 2022-2023)	REED BED CAKE SLUDGE - Cake sludge that has been aerobically digested and fed into the reed beds for dewatering. At Sampling Point 007, the permittee shall collect representative composite samples of reed bed cake sludge from various depths and locations within the reed beds and composite them for analysis.					

Permit Requirements

1 Influent – Monitoring Requirements

1.1 Sample Point Number: 701- INFLUENT

Monitoring Requirements and Limitations					
Parameter	Limit Type	Limit and Units	Sample Frequency	Sample Type	Notes
Flow Rate		MGD	Daily	Continuous	
BOD5, Total		mg/L	2/Week	24-Hr Flow Prop Comp	
Suspended Solids, Total		mg/L	2/Week	24-Hr Flow Prop Comp	

1.1.1 Changes from Previous Permit:

Influent limitations and monitoring requirements were evaluated for this permit term and no changes were required.

1.1.2 Explanation of Limits and Monitoring Requirements

Monitoring of influent flow, BOD_5 and total suspended solids is required by s. NR 210.04(2), Wis. Adm. Code, to assess wastewater strengths and volumes and to demonstrate the percent removal requirements in s. NR 210.05, Wis. Adm. Code, and in the Standard Requirements section of the permit.

2 In-Plant – Monitoring Requirements

2.1 Sample Point Number: 101- OTHER BYPASS

Monitoring Requirements and Limitations						
Parameter	Limit Type	Limit and Units	Sample Frequency	Sample Type	Notes	
Flow Rate		MGD	Per Occurrence	Estimated	Start flow measurement at the commencement of bypass operations. Measure flow in daily increments until operation ends and report daily bypass flow on the eDMR. See the Other Bypass Requirements permit section.	
Time		hours	Per Occurrence	Calculated	Report the total duration of 'Other Bypass' within a given day (12:00am - 11:59pm) in which the other bypass occurs. See the Other Bypass Requirements permit section.	

2.1.1 Changes from Previous Permit:

N/A – this is a new sample point that was not included in the previous permit.

2.1.2 Explanation of Limits and Monitoring Requirements

Other Bypass Monitoring: The Department has determined that an 'other bypass' as defined in s. NR 205.07(1)(u)3., Wis. Adm. Code, may occur at the wastewater treatment facility.

Section NR 205.07(1)(u), Wis. Adm. Code, requires that the Department approve all other bypasses. The Department included this sampling point to constitute permitting and approval of the other bypass provided the other bypass monitoring requirements and conditions are followed. The other bypass may only divert flow around the tertiary filtration system during high flow events. A bypass that is defined as a controlled diversion in s. NR 205.07(1)(v), Wis. Adm. Code, is not covered under this sample point. In no case shall this include flow diversion which would constitute blending, as defined in s. NR 210.03(2e), Wis. Adm. Code.

3 Surface Water - Monitoring and Limitations

3.1 Sample Point Number: 001- EFFLUENT

Monitoring Requirements and Limitations					
Parameter	Limit Type	Limit and Units	Sample Frequency	Sample Type	Notes
Flow Rate		MGD	Daily	Continuous	
BOD5, Total	Weekly Avg	30 mg/L	2/Week	24-Hr Flow Prop Comp	Interim limit. See the Effluent Limits for BOD,

	Monitoring Requirements and Limitations							
Parameter	Limit Type	Limit and Units	Sample Frequency	Sample Type	Notes			
					DO, and Ammonia Schedule.			
BOD5, Total	Weekly Avg	9.3 mg/L	2/Week	24-Hr Flow Prop Comp	Limit effective July 1, 2027. Limit applies May- October.			
BOD5, Total	Weekly Avg	15 mg/L	2/Week	24-Hr Flow Prop Comp	Limit effective July 1, 2027. Limit applies November-April.			
BOD5, Total	Monthly Avg	20 mg/L	2/Week	24-Hr Flow Prop Comp	Interim limit. See the Effluent Limits for BOD, DO, and Ammonia Schedule.			
BOD5, Total	Monthly Avg	9.3 mg/L	2/Week	24-Hr Flow Prop Comp	Limit effective July 1, 2027. Limit applies May- October.			
BOD5, Total	Monthly Avg	15 mg/L	2/Week	24-Hr Flow Prop Comp	Limit effective July 1, 2027. Limit applies November-April.			
BOD5, Total	Weekly Avg	64 lbs/day	2/Week	Calculated	Monitoring only upon permit effective date. Limit effective July 1, 2027. Limit applies May-October.			
BOD5, Total	Weekly Avg	102 lbs/day	2/Week	Calculated	Monitoring only upon permit effective date. Limit effective July 1, 2027. Limit applies November- April.			
Suspended Solids, Total	Weekly Avg	10 mg/L	2/Week	24-Hr Flow Prop Comp	Limit applies May-October.			
Suspended Solids, Total	Weekly Avg	15 mg/L	2/Week	24-Hr Flow Prop Comp	Limit applies November- April.			
Suspended Solids, Total	Monthly Avg	10 mg/L	2/Week	24-Hr Flow Prop Comp	Limit applies May-October.			
Suspended Solids, Total	Monthly Avg	15 mg/L	2/Week	24-Hr Flow Prop Comp	Limit applies November- April.			
Suspended Solids, Total	Weekly Avg	168 lbs/day	2/Week	Calculated				
Suspended Solids, Total	Monthly Avg	113 lbs/day	2/Week	Calculated				

	Monitoring Requirements and Limitations							
Parameter	Limit Type	Limit and Units	Sample Frequency	Sample Type	Notes			
Suspended Solids, Total		lbs/month	Monthly	Calculated	Calculate the Total Monthly Discharge of TSS and report on the last day of the month on the eDMR. See TMDL Calculations permit section.			
Suspended Solids, Total		lbs/yr	Monthly	Calculated	Calculate the 12-month rolling sum of total monthly mass of TSS discharged and report on the last day of the month on the eDMR. See TMDL Calculations permit section.			
Dissolved Oxygen	Daily Min	4.0 mg/L	5/Week	Grab	Interim limit. See the Effluent Limits for BOD, DO, and Ammonia Schedule.			
Dissolved Oxygen	Daily Min	8.0 mg/L	5/Week	Grab	Limit effective July 1, 2027.			
pH Field	Daily Min	6.0 su	5/Week	Grab				
pH Field	Daily Max	9.0 su	5/Week	Grab				
E. coli	Geometric Mean - Monthly	126 #/100 ml	Weekly	Grab	Monitoring and limit effective May through September annually per the Effluent Limitations for E. coli Schedule.			
E. coli	% Exceedance	10 Percent	Monthly	Calculated	Monitoring and limit effective May through September annually per the Effluent Limitations for E. coli Schedule. See the E. coli Percent Limit permit section. Enter the result in the eDMR on the last day of the month.			
Chloride	Daily Max	1,050 mg/L	4/Month	24-Hr Flow Prop Comp	Interim limit. Sampling shall be conducted on four consecutive days one week per month. See the Chloride Variance - Implement Source Reduction Measures permit section and the			

	Monitoring Requirements and Limitations							
Parameter	Limit Type	Limit and Units	Sample Frequency	Sample Type	Notes			
					Chloride Source Reduction Measures (Target Value) Schedule.			
Chloride	Weekly Avg	780 mg/L	4/Month	24-Hr Flow Prop Comp	Interim limit. Sampling shall be conducted on four consecutive days one week per month. See the Chloride Variance - Implement Source Reduction Measures permit section and the Chloride Source Reduction Measures (Target Value) Schedule.			
Phosphorus, Total	Monthly Avg	1.0 mg/L	Weekly	24-Hr Flow Prop Comp				
Phosphorus, Total	Monthly Avg	5.6 lbs/day	Weekly	Calculated	Monitoring only upon permit effective date. Final TMDL-Based Mass Limits for Total Phosphorus go into effect per the Schedule. See also the Phosphorus TMDL permit section.			
Phosphorus, Total		lbs/month	Monthly	Calculated	Calculate the Total Monthly Discharge of phosphorus and report on the last day of the month on the eDMR. See TMDL Calculations permit section.			
Phosphorus, Total		lbs/yr	Monthly	Calculated	Calculate the 12-month rolling sum of total monthly mass of phosphorus discharged and report on the last day of the month on the DMR. See TMDL Calculations permit section.			
Nitrogen, Ammonia (NH3-N) Total	Daily Max - Variable	mg/L	Weekly	24-Hr Flow Prop Comp	Limits apply November- April. See the Daily Maximum Ammonia Nitrogen (NH3-N) Limits permit section.			
Nitrogen, Ammonia (NH3-N) Total	Weekly Avg	8.0 mg/L	Weekly	24-Hr Flow Prop Comp	Limit applies April-May.			

Monitoring Requirements and Limitations							
Parameter	Limit Type	Limit and Units	Sample Frequency	Sample Type	Notes		
Nitrogen, Ammonia (NH3-N) Total	Weekly Avg	5.7 mg/L	Weekly	24-Hr Flow Prop Comp	Interim limit. See the Effluent Limits for BOD, DO, and Ammonia Schedule. Limit applies June-September (until June 30, 2027).		
Nitrogen, Ammonia (NH3-N) Total	Weekly Avg	3.0 mg/L	Weekly	24-Hr Flow Prop Comp	Limit effective July 1, 2027. Limit applies June- September.		
Nitrogen, Ammonia (NH3-N) Total	Weekly Avg	5.5 mg/L	Weekly	24-Hr Flow Prop Comp	Limit applies October- November.		
Nitrogen, Ammonia (NH3-N) Total	Weekly Avg	16 mg/L	Weekly	24-Hr Flow Prop Comp	Limit applies December- March.		
Nitrogen, Ammonia (NH3-N) Total	Monthly Avg	3.2 mg/L	Weekly	24-Hr Flow Prop Comp	Limit applies April-May.		
Nitrogen, Ammonia (NH3-N) Total	Monthly Avg	2.3 mg/L	Weekly	24-Hr Flow Prop Comp	Interim limit. See the Effluent Limits for BOD, DO, and Ammonia Schedule. Limit applies June-September (until June 30, 2027).		
Nitrogen, Ammonia (NH3-N) Total	Monthly Avg	1.3 mg/L	Weekly	24-Hr Flow Prop Comp	Limit effective July 1, 2027. Limit applies June- September.		
Nitrogen, Ammonia (NH3-N) Total	Monthly Avg	2.3 mg/L	Weekly	24-Hr Flow Prop Comp	Limit applies October- November.		
Nitrogen, Ammonia (NH3-N) Total	Monthly Avg	6.4 mg/L	Weekly	24-Hr Flow Prop Comp	Limit applies December- March.		
Nitrogen, Total Kjeldahl		mg/L	See Listed Qtr(s)	24-Hr Flow Prop Comp	Annual in rotating quarters. See Nitrogen Series Monitoring permit section.		
Nitrogen, Nitrite + Nitrate Total		mg/L	See Listed Qtr(s)	24-Hr Flow Prop Comp	Annual in rotating quarters. See Nitrogen Series Monitoring permit section.		
Nitrogen, Total		mg/L	See Listed Qtr(s)	Calculated	Annual in rotating quarters. See Nitrogen Series Monitoring permit section. Total Nitrogen shall be calculated as the sum of reported values for Total Kieldahl Nitrogen and		

	Мо	nitoring Requi	rements and Lir	nitations	
Parameter	Limit Type	Limit and Units	Sample Frequency	Sample Type	Notes
					Total Nitrite + Nitrate Nitrogen.
PFOS		ng/L	1/ 2 Months	Grab	Monitoring only. See PFOS/PFOA Minimization Plan Determination of Need Schedule.
PFOA		ng/L	1/2 Months	Grab	Monitoring only. See PFOS/PFOA Minimization Plan Determination of Need Schedule.
Acute WET		TUa	See Listed Qtr(s)	24-Hr Flow Prop Comp	See the Whole Effluent Toxicity (WET) Testing permit section.
Chronic WET	Monthly Avg	1.0 TUc	See Listed Qtr(s)	24-Hr Flow Prop Comp	See the Whole Effluent Toxicity (WET) Testing permit section.
Temperature Maximum		deg F	3/Week	Grab	Monitoring only upon permit effective date. See the Effluent Temperature Monitoring and Effluent Temperature Limitations sections. See also the Temperature Limits (Municipal Facilities) Schedule.

3.1.1 Changes from Previous Permit

Effluent limitations and monitoring requirements were evaluated for this permit term and the following changes were made from the previous permit.

- Addition of mass limits, and updated weekly average and monthly average limits for BOD₅, to become effective per the Effluent Limits for BOD, DO, and Ammonia Schedule.
- Updated weekly average and monthly average limits for TSS, and the addition of TMDL-based mass limits.
- Increased the daily minimum dissolved oxygen limit from 4.0 mg/L to 8.0 mg/L, to become effective per the Effluent Limits for BOD, DO, and Ammonia Schedule.
- Addition of Escherichia coli (E. coli) monitoring and limits, to become effective per the Effluent Limitations for E. coli Schedule.
- Updated chloride variance interim limits to 1,050 mg/L as a daily maximum and 780 mg/L as a weekly average, and updated source reduction measures (SRMs) throughout the permit term.
- Addition of TMDL-based mass limits for total phosphorus, to become effective per the TMDL-Based Effluent Mass Limits for Total Phosphorus Schedule.

- Updated ammonia nitrogen daily maximum (variable), weekly average and monthly average limits. Weekly average and monthly average ammonia limits for June-Sept are to become effective per the Effluent Limits for BOD, DO, and Ammonia Schedule.
- Addition of annual total nitrogen monitoring (TKN, NO₂+NO₃ and Total N) in rotating quarters throughout the permit term.
- Addition of PFOS/PFOA monitoring at a frequency of every other month in accordance with s. NR 106.98(2)(a), Wis. Adm. Code.
- Addition of a Chronic Whole Effluent Toxicity (WET) testing effluent limit.
- Addition of maximum temperature monitoring and limits to become effective per the Temperature Limits (Municipal Facilities) Schedule.

3.1.2 Explanation of Limits and Monitoring Requirements

Detailed discussions of limits and monitoring requirements can be found in the Water Quality-Based Effluent Limits (WQBEL) memo, by Nicole Krueger, Water Resources Engineer, dated November 8, 2024.

Monitoring Frequencies – The Monitoring Frequencies for Individual Wastewater Permits guidance (April 12, 2021) recommends that standard monitoring frequencies be included in individual wastewater permits based on the size and type of the facility, in order to characterize effluent quality and variability, to detect events of noncompliance, and to ensure consistency in permits issued across the state. Guidance and requirements in administrative code were considered when determining the appropriate monitoring frequencies for pollutants that have final effluent limits in effect during this permit term.

Expression of Limits – In accordance with the federal regulation 40 CFR 122.45(d) and s. NR 205.065, Wis. Adm. Code, limits in this permit are to be expressed as weekly average and monthly average limits whenever practicable. Minor changes have been made to the BOD₅ and TSS effluent limits.

Disinfection and E. coli – Revisions to bacteria surface water quality criteria to protect recreational uses and accompanying E. coli WPDES permit implementation procedures became effective May 1, 2020.

Section NR 102.04(5)(a), Wis. Adm. Code, states that all surface waters shall be suitable for recreational use and meet the E. coli criteria established to protect this use. Section NR 102.04(5)(b), Wis. Adm. Code, states that exceptions to the disinfection requirement can be made if the Department determines, in accordance with the procedures specified in s. NR 210.06(3), Wis. Adm. Code, that disinfection is not required to meet water quality criteria. As part of the reissuance process, the requirements for disinfection were reviewed under s. NR 210.06(3), Wis. Adm. Code.

It was determined that the permittee is required to disinfect, during the months of May – September. See the WQBEL memo for further explanation.

At the end of the compliance schedule, disinfection requirements and E. coli limits of 126 #/100 ml as a monthly geometric mean that may not be exceeded and 410 #/100 ml as a daily maximum that may not be exceeded more than 10 percent of the time in any calendar month will apply. Monitoring is not required until the limit becomes effective at the end of the compliance schedule.

Chloride – The City of Brillion applied for a chloride variance, under the provisions of s. NR 106.83, Wis. Adm. Code, with its application for permit reissuance. The previous permit also included a chloride variance. The Department reviewed Brillion's application for a chloride variance and the information supplied in the application supports the establishment of an interim effluent limit. The permittee and the Department have reached agreement on interim chloride limits of 1,050 mg/L (expressed as a daily maximum) and 780 mg/L (expressed as a weekly average), a target value of 702 mg/L (weekly avg), implementation of chloride source reduction measures, and submittal of annual progress reports each year by January 31st. The chloride source reduction measures that are required to be implemented can be found in the proposed permit. The Department concludes that Brillion is qualified for a variance from the water quality standard for chloride and proposes reissuance of this permit with the proposed variance.

Total Nitrogen Monitoring (TKN, NO₂+NO₃, and Total N) – The Department has included effluent monitoring for Total Nitrogen in the permit through the authority under s. 283.55(1)(e), Wis. Stats. Testing is required during the following quarters: October – December 2025; April – June 2026; July – September 2027; January – March 2028; and October – December 2029.

Acute WET – Testing is required during the following quarters: April – June 2026; and October to December 2029.

Chronic WET – Testing is required during the following quarters: October – December 2025; April – June 2026; July – September 2027; January – March 2028; and October – December 2029.

PFOS/PFOA – NR 106 Subchapter VIII – Permit Requirements for PFOS and PFOA Dischargers became effective on August 1, 2022. The facility must sample effluent once every two-months for PFOS and PFOA pursuant s. NR 106.98(2)(b), Wis. Adm. Code.

A sample frequency of 1/2 months means one sample is taken during any two-month period. Examples of 1/2 month samples would be every other month (Jan, March, May, etc.) or back-to-back months with a break in between (February & March, May & June, Aug & Sept, etc.). DMR Short Forms will be generated for the following time periods: January-February, March-April, May-June, July-August, September-October, and November-December. At a minimum, one sample result will be present on each form.

The initial determination of the need for sampling shall be conducted for up to two years in order to determine if the permitted discharge has the reasonable potential to cause or contribute to an exceedance of the PFOS or PFOA standards under s. NR 102.04(8)(d)1, Wis. Adm. Code.

Municipal Sludge Description								
Sample Point	Sludge Class (A or B)	Sludge Type (Liquid or Cake)	Pathogen Reduction Method	Vector Attraction Method	Reuse Option	Amount Reused/Disposed (Dry Tons/Year)		
006	В	Liquid	N/A	N/A	Landfilling	N/A		
007	В	Cake	N/A	N/A	Landfilling	961 Metric Tons (Avg. 2022- 2023)		
Does slue	Does sludge management demonstrate compliance? Yes.							
Is additional sludge storage required? No.								
Is Radium-226 present in the water supply at a level greater than 2 pCi/liter? No.								
Is a priority pollutant scan required? N/A								

4 Land Application - Monitoring and Limitations

4.1 Sample Point Number: 006- REED BED FEED SLUDGE

Monitoring Requirements and Limitations					
Parameter	Limit Type	Limit and Units	Sample Frequency	Sample Type	Notes
Solids, Total		Percent	Per Application	Composite	Monitoring required only when reed bed feed sludge is land applied or hauled to

	Mo	nitoring Requir	ements and Li	nitations	
Parameter	Limit Type	Limit and Units	Sample Frequency	Sample Type	Notes
					another permitted facility in any year.
Arsenic Dry Wt	High Quality	41 mg/kg	Per Application	Composite	Monitoring required and limits applicable only when
Arsenic Dry Wt	Ceiling	75 mg/kg	Per Application	Composite	reed bed feed sludge is land applied or hauled to another permitted facility in any
Cadmium Dry Wt	High Quality	39 mg/kg	Per Application	Composite	year.
Cadmium Dry Wt	Ceiling	85 mg/kg	Per Application	Composite	
Copper Dry Wt	High Quality	1,500 mg/kg	Per Application	Composite	
Copper Dry Wt	Ceiling	4,300 mg/kg	Per Application	Composite	
Lead Dry Wt	High Quality	300 mg/kg	Per Application	Composite	
Lead Dry Wt	Ceiling	840 mg/kg	Per Application	Composite	
Mercury Dry Wt	High Quality	17 mg/kg	Per Application	Composite	
Mercury Dry Wt	Ceiling	57 mg/kg	Per Application	Composite	
Molybdenum Dry Wt	Ceiling	75 mg/kg	Per Application	Composite	
Nickel Dry Wt	High Quality	420 mg/kg	Per Application	Composite	
Nickel Dry Wt	Ceiling	420 mg/kg	Per Application	Composite	
Selenium Dry Wt	High Quality	100 mg/kg	Per Application	Composite	
Selenium Dry Wt	Ceiling	100 mg/kg	Per Application	Composite	
Zinc Dry Wt	High Quality	2,800 mg/kg	Per Application	Composite	1
Zinc Dry Wt	Ceiling	7,500 mg/kg	Per Application	Composite	

	Monitoring Requirements and Limitations				
Parameter	Limit Type	Limit and Units	Sample Frequency	Sample Type	Notes
Nitrogen, Total Kjeldahl		Percent	Per Application	Composite	Monitoring required only when reed bed feed sludge
Nitrogen, Ammonium (NH4-N) Total		Percent	Per Application	Composite	- is land applied in any year.
Phosphorus, Total		Percent	Per Application	Composite	
Phosphorus, Water Extractable		% of Tot P	Per Application	Composite	-
Potassium, Total Recoverable		Percent	Per Application	Composite	-
PFOA + PFOS		ug/kg	Per Application	Calculated	Monitoring required only when reed bed feed sludge is land applied or hauled to another permitted facility in any year. Report the sum of PFOA and PFOS. See PFAS Permit Sections for more information.
PFAS Dry Wt			Per Application	Grab	Monitoring required only when reed bed feed sludge is land applied or hauled to another permitted facility in any year. Perfluoroalkyl and Polyfluoroalkyl Substances based on updated DNR PFAS List. See PFAS Permit Sections for more information.

4.1.1 Changes from Previous Permit:

Sludge limitations and monitoring requirements were evaluated for this permit term and the following changes were made from the previous permit.

- Removal of PCB monitoring consistent with the Department's Sludge Monitoring Guidance.
- Addition of Per Application PFAS (PFOA + PFOS) monitoring pursuant to s. NR 204.06(2)(b)9., Wis. Adm. Code.

4.1.2 Explanation of Limits and Monitoring Requirements

Requirements for disposal, including land application of municipal sludge, are determined in accordance with ch. NR 204, Wis. Adm. Code. Ceiling and high-quality limits for metals in sludge are specified in s. NR 204.07(5). Requirements for pathogens are specified in s. NR 204.07(6) and in s. NR 204.07 (7) for vector attraction requirements. Limitations for PCBs are addressed in s. NR 204.07(3)(k). Radium requirements are addressed in s. NR 204.07(3)(n).

PFAS – The presence and fate of PFAS in municipal and industrial sludges is an emerging public health concern. EPA is currently developing a risk assessment to determine future land application rates and expects to release this risk assessment by the end of 2024. In the interim, the department has developed the "Interim Strategy for Land Application of Biosolids and Industrial Sludges Containing PFAS."

Collecting sludge data on PFAS concentrations from a wide range of wastewater treatment facilities will help protect public health from exposure to elevated levels of PFAS and determine the department's implementation of EPA's recommendations. To quantitate this risk, PFAS sampling has been included in this WPDES permit pursuant to ss. NR 214.18(5)(b) and NR 204.06(2)(b)9., Wis. Adm. Code.

Monitoring Requirements and Limitations					
Parameter	Limit Type	Limit and Units	Sample Frequency	Sample Type	Notes
Solids, Total		Percent	Once	Composite	Monitoring required once in 2026 and again if the reed bed cake sludge is land applied or hauled to another permitted facility in any year.
Arsenic Dry Wt	High Quality	41 mg/kg	Once	Composite	Monitoring required once
Arsenic Dry Wt	Ceiling	75 mg/kg	Once	Composite	reed bed cake sludge is land
Cadmium Dry Wt	High Quality	39 mg/kg	Once	Composite	applied or hauled to another
Cadmium Dry Wt	Ceiling	85 mg/kg	Once	Composite	year. Limits applicable only
Copper Dry Wt	High Quality	1,500 mg/kg	Once	Composite	when reed bed cake sludge
Copper Dry Wt	Ceiling	4,300 mg/kg	Once	Composite	is land applied.
Lead Dry Wt	High Quality	300 mg/kg	Once	Composite	
Lead Dry Wt	Ceiling	840 mg/kg	Once	Composite	
Mercury Dry Wt	High Quality	17 mg/kg	Once	Composite	
Mercury Dry Wt	Ceiling	57 mg/kg	Once	Composite	
Molybdenum Dry Wt	Ceiling	75 mg/kg	Once	Composite	
Nickel Dry Wt	High Quality	420 mg/kg	Once	Composite	
Nickel Dry Wt	Ceiling	420 mg/kg	Once	Composite	
Selenium Dry Wt	High Quality	100 mg/kg	Once	Composite	
Selenium Dry Wt	Ceiling	100 mg/kg	Once	Composite	
Zinc Dry Wt	High Quality	2,800 mg/kg	Once	Composite	
Zinc Dry Wt	Ceiling	7,500 mg/kg	Once	Composite	
Nitrogen, Total Kjeldahl		Percent	Per Application	Composite	Monitoring required if the reed bed cake sludge is land

4.2 Sample Point Number: 007- REED BED CAKE SLUDGE

	Monitoring Requirements and Limitations				
Parameter	Limit Type	Limit and Units	Sample Frequency	Sample Type	Notes
Nitrogen, Ammonium (NH4-N) Total		Percent	Per Application	Composite	applied in any year.
Phosphorus, Total		Percent	Per Application	Composite	-
Phosphorus, Water Extractable		% of Tot P	Per Application	Composite	-
Potassium, Total Recoverable		Percent	Per Application	Composite	-
PFOA + PFOS		ug/kg	Once	Calculated	Monitoring required once in 2026 and again if the reed bed cake sludge is land applied or hauled to another permitted facility in any year. Report the sum of PFOA and PFOS. See PFAS Permit Sections for more information.
PFAS Dry Wt			Once	Grab	Monitoring required once in 2026 and again if the reed bed cake sludge is land applied or hauled to another permitted facility in any year. Perfluoroalkyl and Polyfluoroalkyl Substances based on updated DNR PFAS List. See PFAS Permit Sections for more information.

4.2.1 Changes from Previous Permit:

Sludge limitations and monitoring requirements were evaluated for this permit term and the following changes were made from the previous permit.

- Removal of PCB monitoring consistent with the Department's Sludge Monitoring Guidance.
- Addition of one time PFAS (PFOA + PFOS) monitoring pursuant to s. NR 204.06(2)(b)9., Wis. Adm. Code.

4.2.2 Explanation of Limits and Monitoring Requirements

Requirements for disposal, including land application of municipal sludge, are determined in accordance with ch. NR 204, Wis. Adm. Code. Ceiling and high-quality limits for metals in sludge are specified in s. NR 204.07(5). Requirements for pathogens are specified in s. NR 204.07(6) and in s. NR 204.07 (7) for vector attraction requirements. Limitations for PCBs are addressed in s. NR 204.07(3)(k). Radium requirements are addressed in s. NR 204.07(3)(n).

PFAS – The presence and fate of PFAS in municipal and industrial sludges is an emerging public health concern. EPA is currently developing a risk assessment to determine future land application rates and expects to release this risk assessment by the end of 2024. In the interim, the department has developed the "Interim Strategy for Land Application of Biosolids and Industrial Sludges Containing PFAS."

Collecting sludge data on PFAS concentrations from a wide range of wastewater treatment facilities will help protect public health from exposure to elevated levels of PFAS and determine the department's implementation of EPA's recommendations. To quantitate this risk, PFAS sampling has been included in this WPDES permit pursuant to ss. NR 214.18(5)(b) and NR 204.06(2)(b)9., Wis. Adm. Code.

5 Schedules

5.1 Chloride Source Reduction Measures (Target Value)

As a condition of the variance to the water quality based effluent limitation(s) for chloride granted in accordance with s. NR 106.83(2), Wis. Adm. Code, the permittee shall perform the following actions.

Required Action	Due Date
Annual Chloride Progress Report: Submit an annual chloride progress report related to the source reduction activities for the previous year. The annual chloride progress report shall:	01/31/2026
Indicate which chloride source reduction measures or activities in the Source Reduction Plan have been implemented and state which, if any, source reduction measures from the Source Reduction Plan were not pursued and why. Include an assessment of whether each implemented source reduction measure appears to be effective or ineffective at reducing pollutant discharge concentrations and identify actions planned for the upcoming year;	
Include an analysis of trends in weekly, monthly and annual average chloride concentrations and total mass discharge of chloride based on chloride sampling and flow data; and	
Include an analysis of how effluent chloride varies with time and with significant loadings of chloride. Note that the interim limitation listed in the Surface Water section of this permit remains enforceable until new enforceable limits are established in the next permit issuance.	
The first annual chloride progress report is to be submitted by the Date Due.	
Annual Chloride Progress Report #2: Submit the chloride progress report, related to the source reduction activities for the previous year, as defined above.	01/31/2027
Annual Chloride Progress Report #3: Submit the chloride progress report, related to the source reduction activities for the previous year, as defined above.	01/31/2028
Annual Chloride Progress Report #4: Submit the chloride progress report, related to the source reduction activities for the previous year, as defined above.	01/31/2029
Final Chloride Report: Submit the final chloride report documenting the success in meeting the chloride target value of 702 mg/L (weekly avg), as well as the anticipated future reduction in chloride sources and chloride effluent concentrations.	12/31/2029
The report shall:	
Summarize chloride source reduction measures that have been implemented during the current permit term and state which, if any, source reduction measures from the Source Reduction Plan were not pursued and why;	
Include an assessment of which source reduction measures appear to have been effective or	

ineffective. Evaluate any needed changes to the pollutant reduction strategy accordingly;	
Include an analysis of trends in weekly, monthly and annual average chloride concentrations and total mass discharge of chloride based on chloride sampling and flow data during the current permit term; and	
Include an analysis of how influent and effluent chloride varies with time and with significant loadings of chloride as identified in the source reduction plan.	
If the permittee intends to reapply for a chloride variance, for the reissued permit, proposed target limits and a detailed source reduction measures plan, outlining the source reduction activities proposed for the upcoming permit term, shall also be included per ss. NR 106.90 (5) and NR 106.83 (4), Wis. Adm. Code. An updated source reduction measures plan shall:	
Include an explanation of why or how each source reduction measure will result in reduced discharge of the target pollutant; and	
Evaluate any available information on pollutant sources, timing, and concentration to update the mass balance assumptions and expected sources of the pollutant, and	
Identify any information needs that would help to better determine pollutant sources and make plans to collect that information.	
Note that the target value is the benchmark for evaluating the effectiveness of the chloride source reduction measures but is not an enforceable limitation under the terms of this permit.	
Annual Chloride Reports After Permit Expiration: In the event that this permit is not reissued by the date the permit expires the permittee shall continue to submit annual chloride reports for the previous year following the due date of Annual Chloride Progress Reports listed above. Annual Chloride Progress Reports shall include the information as defined above.	

5.1.1 Explanation of Schedule

Chloride Source Reduction Measures (Target Value) – This schedule is required to ensure that the permittee maintains compliance with the conditions and requirements of receiving a variance from the water quality-based chloride effluent limits of 780 mg/L expressed as a daily maximum and 400 mg/L expressed as a weekly average. Since a compliance schedule is being granted, an interim limit is required, and for Brillion the limits are established as 1,050 mg/L (as a daily maximum) and 780 mg/L (as a weekly average). The schedule requires that annual reports shall indicate which source reduction measures Brillion has implemented during each calendar year, and an analysis of chloride concentration and mass discharge data based on chloride sampling and flow data. The annual reports shall document progress made towards meeting the chloride target value of 702 mg/L (weekly ave) by the end of the permit term.

5.2 TMDL-Based Effluent Mass Limits for Total Phosphorus

The permittee shall comply with the limits for Phosphorus as specified. No later than 14 days following each compliance date, the permittee shall notify the Department in writing of its compliance or noncompliance. If a submittal is required, a timely submittal fulfills the notification requirement.

Required Action	Due Date
Construction Upgrade Progress Report #1: The permittee shall submit a progress report on construction upgrades. Note: See 'Alternative Approaches to Phosphorus WQBEL Compliance' in the Surface Water section of this permit.	09/30/2025
Construction Upgrade Progress Report #2: The permittee shall submit a progress report on	
construction upgrades. Note: See 'Alternative Approaches to Phosphorus WQBEL Compliance' in the	

Surface Water section of this permit.	
Complete Construction: The permittee shall complete construction of wastewater treatment system upgrades. Note: See 'Alternative Approaches to Phosphorus WQBEL Compliance' in the Surface Water section of this permit.	06/30/2027
Achieve Compliance: The permittee shall achieve compliance with final phosphorus WQBELs. Note: See 'Alternative Approaches to Phosphorus WQBEL Compliance' in the Surface Water section of this permit.	07/01/2027

5.2.1 Explanation of Schedule

TMDL-Based Effluent Mass Limits for Total Phosphorus – This compliance schedule contains the remaining Required Actions from the previous permit in order to achieve compliance with the TMDL-based effluent mass limits for total phosphorus by July 1, 2027.

5.3 Effluent Limits for BOD, DO, and Ammonia

The permittee shall comply with the limits for BOD, DO, and Ammonia as specified. No later than 14 days following each compliance date, the permittee shall notify the Department in writing of its compliance or noncompliance. If a submittal is required, a timely submittal fulfills the notification requirement.

Required Action	Due Date
Construction Upgrade Progress Report #1: The permittee shall submit a progress report on construction upgrades.	09/30/2025
Construction Upgrade Progress Report #2: The permittee shall submit a progress report on construction upgrades.	09/30/2026
Complete Construction: The permittee shall complete construction of wastewater treatment system upgrades.	06/30/2027
Achieve Compliance: The permittee shall achieve compliance with final BOD, DO, and Ammonia WQBELs.	07/01/2027

5.3.1 Explanation of Schedule

Effluent Limits for BOD, DO, and Ammonia – This compliance schedule aligns with the schedule for total phosphorus because the current/on-going upgrades to the facility are also needed in order to comply with the new, more stringent water quality-based effluent limits for BOD₅, DO, and Ammonia (weekly avg and monthly avg limits in June-Sept). The current limits will act as interim limits until the final limits become effective on July 1, 2027.

5.4 Disinfection and Effluent Limitations for E. coli

The permittee shall install disinfection treatment and comply with surface water limitations for E. coli as specified. No later than 14 days following each compliance date, the permittee shall notify the Department in writing of its compliance or noncompliance. If a submittal is required, a timely submittal fulfills the notification requirement.

Required Action	Due Date
Progress Report: The permittee shall submit a progress report on development and submittal of a facility plan for upgrades to meet disinfection requirements and E. coli limits.	03/31/2026
Submit Facility Plan: The permittee shall submit a Facility Plan per s. NR 110.09, Wis. Adm. Code	01/31/2027
for meeting disinfection requirements and complying with E. coli surface water limitations. The	

permittee may submit an abbreviated facility plan if the Department determines that the modifications are minor.	
Final Plans and Specifications: The permittee shall submit final construction plans to the Department for approval pursuant to ch. NR 108, Wis. Adm. Code, specifying treatment plant upgrades that must be constructed to meet disinfection requirements per s. NR 210.06(1), Wis. Adm Code, achieve compliance with final E. coli limitations, and a schedule for completing construction of the upgrades by the complete construction date specified below.	01/31/2028
Treatment Plant Upgrade to Meet Limitations: The permittee shall initiate bidding, procurement, and/or construction of the project. The permittee shall obtain approval of the final construction plans and schedule from the Department pursuant to s. 281.41. Stats., prior to initiating activities defined as construction under ch. NR 108, Wis. Adm. Code. Upon approval of the final construction plans and schedule by the Department pursuant to s. 281.41, Stats., the permittee shall construct the treatment plant upgrades in accordance with the approved plans and specifications.	07/31/2028
Construction Upgrade Progress Report: The permittee shall submit a progress report on construction upgrades.	07/31/2029
Complete Construction: The permittee shall complete construction of wastewater treatment system upgrades.	01/31/2030
Achieve Compliance: The permittee shall achieve compliance with final E. coli limitations.	04/30/2030

5.4.1 Explanation of Schedule

Disinfection and Effluent Limitations for E. coli – A compliance schedule is included in the permit to provide time for the permittee to submit plans and specs and install disinfection treatment for meeting effluent E. coli water quality-based effluent limits and disinfection requirements pursuant s. NR 210.06, Wis. Adm. Code.

5.5 Temperature Limits (Municipal Facilities)

This compliance schedule requires the permittee to achieve compliance by the specified date.

Required Action	Due Date
Report on Effluent Discharges: Submit a report on effluent temperature with conclusions regarding compliance. Informational Note: Refer to the Surface Water subsection regarding 'Determination of Need for Effluent Limits' for information concerning a Department determination on the need for limits and pursuing re-evaluation of limits per NR 106 Subchapters V & VI or NR 102.26, Wis. Adm. Code.	06/30/2026
Action Plan: Submit an action plan for complying with all effluent temperature limits that remain following the Department's review for necessity.	12/31/2026
Construction Plans: Submit construction plans (if construction is required for complying with effluent temperature limits) and include plans and specifications with the submittal.	06/30/2027
Initiate Actions: Initiate actions identified in the plan.	06/30/2028
Complete Actions: Complete actions necessary to achieve compliance with effluent temperature limits.	06/30/2029

5.5.1 Explanation of Schedule

Temperature Limits (Municipal Facilities) – A compliance schedule is included in the permit to provide time for the permittee to submit plans and specs and install treatment for meeting thermal effluent limitations.

5.6 PFOS/PFOA Minimization Plan Determination of Need

Required Action	Due Date
Report on Effluent Discharge: Submit a report on effluent PFOS and PFOA concentrations and include an analysis of trends in monthly and annual average PFOS and PFOA concentrations. This analysis should also include a comparison to the applicable narrative standard in s. NR 102.04(8)(d), Wis. Adm. Code.	06/30/2026
This report shall include all additional PFOS and PFOA data that may be collected including any influent, intake, in-plant, collection system sampling, and blank sample results.	
Report on Effluent Discharge and Evaluation of Need: Submit a final report on effluent PFOS and PFOA concentrations and include an analysis of trends in monthly and annual average PFOS and PFOA concentrations of data collected over the last 24 months. The report shall also provide a comparison on the likelihood of the facility needing to develop a PFOS/PFOA minimization plan.	06/30/2027
This report shall include all additional PFOS and PFOA data that may be collected including any influent, intake, in-plant, collection system sampling, and blank sample results.	
The permittee shall also submit a request to the department to evaluate the need for a PFOS/PFOA minimization plan.	
If the Department determines a PFOS/PFOA minimization plan is needed based on a reasonable potential evaluation, the permittee will be required to develop a minimization plan for Department approval no later than 90 days after written notification was sent from the Department. The Department will modify or revoke and reissue the permit to include PFOS/PFOA minimization plan reporting requirements along with a schedule of compliance to meet WQBELs. Effluent monitoring of PFOS and PFOA shall continue as specified in the permit until the modified permit is issued.	
If, however, the Department determines there is no reasonable potential for the facility to discharge PFOS or PFOA above the narrative standard in s. NR 102.04(8)(d), Wis. Adm. Code, no further action is required and effluent monitoring of PFOS and PFOA shall continue as specified in the permit.	

5.6.1 Explanation of Schedule

PFOS/PFOA Minimization Plan Determination of Need – As stated above, ch. NR 106 Subchapter VIII – Permit Requirements for PFOS and PFOA Dischargers became effective on August 1, 2022. Section NR 106.98, Wis. Adm. Code, specifies steps to generate data in order to determine the need for reducing PFOS and PFOA in the discharge. Data generated per the effluent monitoring requirements will be used to determine the need for developing a PFOS/PFOA minimization plan. As part of the schedule, the permittee is required to submit two annual Reports on Effluent Discharge.

If the Department determines that a minimization plan is needed, the permit will be modified or revoked/reissued to include additional requirements.

5.7 Reed Bed Phragmites Survey

An annual survey of adjacent lands for phragmites is required.

Required Action	Due Date
Submit an Annual Phragmites Survey: The permittee shall conduct an annual survey of adjacent lands for new Phragmites growth. Surveys shall be done at a time of the year when Phragmites are biologically active. The annual surveys shall contain the name and qualifications of the person(s) completing the inspection, the date of the survey, and at a minimum include descriptions of the area(s) inspected, land use(s), dominant plant community, existing Phragmites stands, and any areas of potential concern or newly discovered Phragmites growth. Photographic documentation of the survey area(s) is also recommended. The survey area should be as large as practicable and include any area potentially susceptible to phragmites growth. Survey results shall be submitted to the Department within 60 days of survey completion. The Department shall be notified within 24 hours whenever new growths of Phragmites are discovered. The Department may require the permittee to eradicate specific stands of Phragmites in these areas.	
Annual Phragmites Survey #2: Submit an annual phragmites survey as defined above. Survey results shall be submitted to the Department within 60 days of survey completion.	
Annual Phragmites Survey #3: Submit an annual phragmites survey as defined above. Survey results shall be submitted to the Department within 60 days of survey completion.	
Annual Phragmites Survey #4: Submit an annual phragmites survey as defined above. Survey results shall be submitted to the Department within 60 days of survey completion.	
Annual Phragmites Survey #5: Submit an annual phragmites survey as defined above. Survey results shall be submitted to the Department within 60 days of survey completion.	
Annual Phragmites Surveys After Permit Expiration: In the event that this permit is not reissued by the date the permit expires, the permittee shall continue to conduct annual phragmites surveys and submit survey results to the Department within 60 days of survey completion.	

5.7.1 Explanation of Schedule

Reed Bed Phragmites Surveys – The permittee is required to submit annual surveys of adjacent lands of the reed beds for new Phragmites growth. This schedule serves as a reminder to submit annual Phragmites surveys to the Department by the due date.

Attachments

WQBEL Memo: Water Quality-Based Effluent Limitations for Brillion Wastewater Treatment Facility WPDES Permit No. WI-0020443-10, by Nicole Krueger, Water Resources Engineer, dated November 8, 2024

Chloride Variance EPA Data Sheet

SRM (Source Reduction Measures) Plan, dated December 29, 2022, revised February 14, 2025

Justification Of Any Waivers From Permit Application Requirements

No waivers from permit application requirements were requested or granted.

Prepared By: Sarah Donoughe, Wastewater Specialist-Adv

Date: February 18, 2025

CORRESPONDENCE/MEMORANDUM -

DATE: 11/08/2024 – updated 11/15/2024 to include additional DO limits options

TO: Sarah Donoughe – SER

FROM: Nicole Krueger - SER Nicole Krueger

SUBJECT: Water Quality-Based Effluent Limitations for Brillion Wastewater Treatment Facility WPDES Permit No. WI-0020443-10

This is in response to your request for an evaluation of the need for water quality-based effluent limitations (WQBELs) using chapters NR 102, 104, 105, 106, 207, 210, 212, and 217 of the Wisconsin Administrative Code (where applicable), for the discharge from Brillion Wastewater Treatment Facility in Calumet County. This municipal wastewater treatment facility (WWTF) discharges to an unnamed tributary to Spring Creek, located in the North Branch Manitowoc River Watershed in the Manitowoc River Basin. This discharge is included in the Northeast Lakeshore Basin Total Maximum Daily Load (TMDL) as approved by EPA in October 2023. The evaluation of the permit recommendations is discussed in more detail in the attached report.

Based on our review, the following recommendations are made on a chemical-specific basis at Outfall 001:

	Daily	Daily	Weekly	Monthly	Footnotes
Parameter	Maximum	Minimum	Average	Average	
Flow Rate					1,2
BOD ₅					3,4,5
Interim			30 mg/L	20 mg/L	
Final			_	-	
May – October			6.3 mg/L	6.3 mg/L	
			43 lbs/day		
Nov – April			10 mg/L	10 mg/L	
			69 lbs/day		
TSS					3,4,6
TMDL			168 lbs/day	113 lbs/day	
Interim			30 mg/L	20 mg/L	
Final			10 mg/L	10 mg/L	
Dissolved Oxygen		7.0 mg/L			5
pН	9.0 s.u.	6.0 s.u.			1
Bacteria					7
Final Limit				126 #/100 mL	
E. coli				geometric mean	
Chloride	780 mg/L		400 mg/L		8
	5,400 lbs/day		2,700 lbs/day		
Phosphorus					6,9
Interim				1.0 mg/L	
TMDL				5.6 lbs/day	
Ammonia Nitrogen					10
April & May			8.0 mg/L	3.2 mg/L	
June – September			3.0 mg/L	1.3 mg/L	
Oct. & Nov.			5.5 mg/L	2.3 mg/L	
Dec. – March			16 mg/L	6.4 mg/L	
Nov. – April	Variable				

	Daily	Daily	Weekly	Monthly	Footnotes
Parameter	Maximum	Minimum	Average	Average	
PFOS and PFOA					11
TKN, Nitrate+Nitrite, and Total Nitrogen					12
Acute WET					13
Chronic WET				1.0 TUc	13
Temperature					14

Footnotes:

- 1. No changes from the current permit.
- 2. Monitoring only.
- 3. Additional limits to comply with the expression of limits requirements in ss. NR 106.07 and NR 205.065(7), Wis. Adm. Codes, are included in bold.
- 4. A compliance schedule may be included in the reissued permit to meet the BOD₅ concentration and mass limits and the TSS concentration limits. The current limits may be included as interim limits.
- 5. Alternative DO, BOD₅, and TSS limits are shown below. A compliance schedule to meet these limits may be included in the reissued permit.

	Daily minimum	Weekly Average	Monthly Average
BOD5 May – October		9.3 mg/L 64 lbs/day	9.3 mg/L
Nov – April		15 mg/L 102 lbs/day	15 mg/L
TSS			
May – October		10 mg/L	10 mg/L
Nov – April		15 mg/L	15 mg/L
Dissolved Oxygen	8.0 mg/L		

- 6. The TSS and phosphorus mass limits are based on the Total Maximum Daily Load (TMDL) for the Northeast Lakeshore Basin to address phosphorus water quality impairments within the TMDL area. The TMDL was approved by EPA in October 2023.
- 7. Bacteria limits apply during the disinfection season of May through September. Additional final limit: No more than 10 percent of *E. coli* bacteria samples collected in any calendar month may exceed 410 count/100 mL. A compliance schedule to meet the bacteria limits is recommended.
- 8. These are WQBELs for chloride. Alternative effluent limitations of 1050 mg/L as a daily maximum and 780 mg/L as a weekly average (equal to the 4-day P₉₉) may be included in the permit in place of this limit if the chloride variance application that was submitted is approved by EPA. If the variance is not approved, a weekly average wet weather mass limit would also be required.
- 9. The monthly average phosphorus limit is a technology-based limit which also functions as an interim limit for the phosphorus compliance schedule.

Effluent pH s.u.	Limit mg/L	Effluent pH s.u.	Limit mg/L	Effluent pH s.u.	Limit mg/L
$6.0 \le pH \le 6.1$	54	$7.0 < pH \leq 7.1$	33	$8.0 < pH \leq 8.1$	6.9
$6.1 < pH \le 6.2$	53	$7.1 < pH \leq 7.2$	30	$8.1 < pH \leq 8.2$	5.7
$6.2 < pH \leq 6.3$	52	$7.2 < pH \leq 7.3$	26	$8.2 < pH \leq 8.3$	4.7

10. The variable daily maximum ammonia nitrogen limits apply November – April:

$6.3 < pH \leq 6.4$	51	$7.3 < pH \leq 7.4$	23	$8.3 < pH \leq 8.4$	3.9
$6.4 < pH \le 6.5$	49	$7.4 < pH \leq 7.5$	20	$8.4 < pH \leq 8.5$	3.2
$6.5 < pH \leq 6.6$	47	$7.5 < pH \le 7.6$	17	$8.5 < pH \leq 8.6$	2.7
$6.6 < pH \leq 6.7$	45	$7.6 < pH \leq 7.7$	14	$8.6 < pH \leq 8.7$	2.2
$6.7 < pH \leq 6.8$	42	$7.7 < pH \leq 7.8$	12	$8.7 < pH \leq 8.8$	1.8
$6.8 < pH \le 6.9$	39	$7.8 < pH \leq 7.9$	10	$8.8 < pH \leq 8.9$	1.6
$6.9 < pH \leq 7.0$	36	$7.9 < pH \le 8.0$	8.4	$8.9 < pH \leq 9.0$	1.3

- 11. Monitoring is required in accordance with s. NR 106.98(2), Wis. Adm. Code at a once every two month frequency
- 12. As recommended in the Department's October 1, 2019 Guidance for Total Nitrogen Monitoring in Wastewater Permits, annual total nitrogen monitoring is recommended for all minor municipal permittees. Total Nitrogen is the sum of nitrate (NO₃), nitrite (NO₂), and total kjeldahl nitrogen (TKN) (all expressed as N).
- 13. 2/permit term acute and annual chronic WET testing is recommended. The Instream Waste Concentration (IWC) to assess chronic test results is 99%. According to the *State of Wisconsin Aquatic Life Toxicity Testing Methods Manual* (s. NR 219.04, Table A, Wis. Adm. Code), chronic testing shall be performed using a dilution series of 100%, 75%, 50%, 25% & 12.5% and the dilution water used in WET tests conducted on Outfall 001 shall be a grab sample collected from the unnamed tributary. Sampling WET concurrently with any chemical-specific toxic substances is recommended. Tests should be done in rotating quarters, to collect seasonal information about this discharge and should continue after the permit expiration date (until the permit is reissued).
- 14. After a compliance schedule, the following limits are recommended be become effective:

	Calculated Effluent Limit				
Month	Weekly	Daily			
	Average	Maximum			
	Effluent	Effluent			
	Limitation	Limitation			
	(°F)	(°F)			
JAN	49	76			
FEB	50	76			
MAR	52	77			
APR	55	79			
MAY	65	82			
JUN	76	84			
JUL	81	85			
AUG	81	84			
SEP	73	82			
OCT	61	80			
NOV	49	77			
DEC	49	76			

Please consult the attached report for details regarding the above recommendations. If there are any questions or comments, please contact Nicole Krueger at Nicole.Krueger@wisconsin.gov or Diane Figiel at Diane.Figiel@wisconsin.gov.

Attachments (3) – Narrative, Outfall Map, & Thermal Table

PREPARED BY: Nicole Krueger, Water Resources Engineer – SER

E-cc: Trevor Moen, Wastewater Engineer – NER Heidi Schmitt Marquez, Regional Wastewater Supervisor – NER Diane Figiel, Water Resources Engineer – WY/3 Nate Willis, Wastewater Engineer – WY/3

Attachment #1 Water Quality-Based Effluent Limitations for Brillion Wastewater Treatment Facility

WPDES Permit No. WI-0020443-10

Prepared by: Nicole Krueger

PART 1 – BACKGROUND INFORMATION

Facility Description

A conventional gravity sewer system collects wastewater from throughout the City of Brillion. Three lift stations are part of this sewer system. At the WWTF, raw wastewater receives preliminary treatment by a vortex type degritter and a mechanically-cleaned fine screen, and a manually-cleaned bar rack is available as a back-up. Wastewater then flows through a Parshall flume to a splitter box; influent samples are collected prior to the flume. The splitter box sends flow to a pair of primary clarifiers. After primary clarification wastewater receives biological treatment via aeration tanks operating in the "conventional" mode. Phosphorus removal is accomplished by adding ferric chloride to the aeration tanks. Secondary clarifiers are then employed. Screw pumps lift effluent from the secondary clarifiers to a conventional sand filter for tertiary treatment. A sampler set up in the meter room collects composite samples of the and filter effluent.

Attachment #2 is a map of the area showing the approximate location of Outfall 001.

Existing Permit Limitations

The current permit, which expired on June 30, 2023, includes the following effluent limitations and monitoring requirements.

<u> </u>	Daily	Daily	Weekly	Monthly	Six-Month	Footnotes
Parameter	Maximum	Minimum	Average	Average	Average	
Flow Rate						1
BOD ₅			30 mg/L	20 mg/L		2,3
TSS			30 mg/L	20 mg/L		2,3
Dissolved Oxygen		4.0 mg/L				2,3
pН	9.0 s.u.	6.0 s.u.				2
Chloride			1,100 mg/L			4
Phosphorus						5
Interim				1.0 mg/L		
Final				0.225 mg/L	0.075 mg/L	
					0.062 lbs/day	
Ammonia Nitrogen						6
November – April	Variable					
December – March			18 mg/L	7.0 mg/L		
April			8.0 mg/L	3.2 mg/L		
May			8.0 mg/L	3.2 mg/L		
June – September			5.7 mg/L	2.3 mg/L		
Oct. – November			5.8 mg/L	2.3 mg/L		
Acute WET						7

Attachment #1	
---------------	--

Parameter	Daily Maximum	Daily Minimum	Weekly Average	Monthly Average	Six-Month Average	Footnotes
Chronic WET						7

Footnotes:

- 1. Monitoring only.
- 2. These limitations are not being evaluated as part of this review. Because the water quality criteria (WQC), reference effluent flow rates, and receiving water characteristics have not changed, limitations for these water quality characteristics do not need to be re-evaluated at this time.
- 3. These limits are based on the Limited Aquatic Life (LAL) community of the immediate receiving water as described in s. NR 104.02(3)(b), Wis. Adm. Code.
- 4. This is a variance limit to the weekly average WQBEL of 395 mg/L.
- 5. A compliance schedule is in the current permit to meet the final WQBEL by July 2027.
- 6. The following daily maximum daily limits are effective for the months of November April:

Effluent	NH ₃ -N	Effluent	NH ₃ -N
pH - su	Limit – mg/L	pH - su	Limit – mg/L
$pH \le 7.7$	>19	$8.4 < pH \leq 8.5$	4.9
$7.7 < pH \le 7.8$	19	$8.5 < pH \leq 8.6$	4.1
$7.8 < pH \leq 7.9$	16	$8.6 < pH \leq 8.7$	3.4
$7.9 < pH \leq 8.0$	13	$8.7 < pH \leq 8.8$	2.8
$8.0 < pH \leq 8.1$	11	$8.8 < pH \leq 8.9$	2.4
$8.1 < pH \leq 8.2$	8.8	$8.9 < pH \leq 9.0$	2.0
$8.2 < pH \le 8.3$	7.3	pH > 9.0	<2.0
$8.3 < pH \le 8.4$	6.0		

7. Acute WET testing is required 2x/permit term and chronic WET testing is required once every other year. The IWC for chronic testing is 100%.

Receiving Water Information

- Name: Unnamed tributary to Spring Creek
- Waterbody Identification Code (WBIC): 77100
- Classification used in accordance with chs. NR 102 and 104, Wis. Adm. Code: Warmwater sport fish (WWSF) classification, non-public water supply. Note: Cold Water and Public Water Supply criteria are used for bioaccumulating compounds of concern, because the discharge is within the Great Lakes basin.
 - Previously, the limits were based on a Limited Aquatic Life (LAL) classification per table 5 in ch. NR 104, Wis. Adm. Code. However, the outfall moved to a different receiving water in 1981 that is not classified as a variance water in ch. NR 104, Wis. Adm. Code. Therefore, a site visit was conducted in September 2022 and September 2024 by Department biologists. Due to the nature of the receiving water and several fish being observed near the discharge pipe, and it was recommended that the classification be updated to WWSF.
- Low flows used in accordance with chs. NR 106 and 217, Wis. Adm. Code: The following $7-Q_{10}$ and $7-Q_2$ values are estimates from USGS where Outfall 001 is located.
 - $7-Q_{10} = 0.05$ cfs (cubic feet per second) $7-Q_2 = 0.18$ cfs
- Hardness = 356 mg/L as CaCO₃. This value represents the geometric mean of data from chronic WET testing from 02/11/2014 05/07/2019.
- % of low flow used to calculate limits in accordance with s. NR 106.06(4)(c)5., Wis. Adm. Code:

Page 2 of 28

Brillion Wastewater Treatment Facility

25%

- Source of background concentration data: Metals data from the Manitowoc River at County Highway JJ is used for this evaluation because there is no data available for the South Branch Manitowoc River. The Manitowoc River is within the same ecological landscape so ambient water quality characteristics are expected to be similar. The numerical values are shown in the tables below. If no data is available, the background concentration is assumed to be negligible and a value of zero is used in the computations. Background data for calculating effluent limitations for ammonia nitrogen are described later.
- Multiple dischargers: None.
- Impaired water status: The immediate receiving water is not 303(d) listed as impaired. The North Branch Manitowoc River, approximately 2 miles downstream, is 303(d) listed as impaired for total phosphorus and TSS.

Effluent Information

Design flow rate(s):

From the June 2024 Facility Plan:

Annual average = 0.824 MGD (Million Gallons per Day) Peak daily = 2.121 MGDPeak monthly = 1.222 MGD

For reference, the actual average flow from 07/01/2018 - 08/31/2024 was 0.63 MGD.

*The previous WQBEL memos used an annual design flow of 0.708 MGD.

- Hardness = 431 mg/L as CaCO₃. This value represents the geometric mean of data from the permit • reissuance application from 04/24/2022 - 05/06/2022.
- Acute dilution factor used in accordance with s. NR 106.06(3)(c), Wis. Adm. Code: Not applicable this facility does not have an approved Zone of Initial Dilution (ZID).
- Water source: Domestic wastewater with water supply from wells and two industrial contributors: Ariens Company and Professional Plating.
- Additives: Ferric chloride is used for phosphorus removal.
- Effluent characterization: This facility is categorized as a minor municipality, so the permit application required effluent sample analyses for a limited number of common pollutants, as specified in s. NR 200.065, Table 1, Wis. Adm. Code, primarily metal substances plus ammonia, chloride, hardness and phosphorus.
- Effluent data for substances for which a single sample was analyzed is shown in the tables in Part 2 below, in the column titled "MEAN EFFL. CONC.". Otherwise, substances with multiple effluent data are shown in the tables below or in their respective parts in this evaluation.

Endent Copper Data						
Sample Date	Copper µg/L	Sample Date	Copper µg/L	Sample Date	Copper µg/L	
4/24/2022	4.5	5/10/2022	4.3	5/27/2022	3.5	
4/28/2022	4.2	5/14/2022	4.2	5/31/2022	3.7	
5/2/2022	4.3	5/19/2022	4.5	6/4/2022	3.4	
5/6/2022	4.0	5/23/2022	5.0			
$1 - day P_{99} = 5.4 \ \mu g/L$						

Page 3 of 28 Brillion Wastewater Treatment Facility

Attachment #1					
Sample Date C	Copper µg/L	Sample Date	Copper µg/L	Sample Date	Copper µg/L
$4 - \text{dav } P_{09} = 4.7 \ \mu\text{g/L}$					

Binatina	morrae 2 ata
	Chloride mg/L
1-day P ₉₉	1070
4-day P ₉₉	782
30-day P ₉₉	630
Mean	553
Std	172
Sample size	296
Range	169 - 1150

Effluent Chloride Data

The following table presents the average concentrations and loadings at Outfall 001 from 07/01/2018 - 08/31/2024 for all parameters with limits in the current permit to meet the requirements of s. NR 201.03(6), Wis. Adm. Code:

	0
	Average Measurement
BOD ₅	2.27 mg/L*
TSS	1.15 mg/L*
pH field	7.86 s.u.
Phosphorus	0.64 mg/L
Ammonia Nitrogen	0.40 mg/L*
Chloride	553 mg/L
Dissolved Oxygen	9.48 mg/L

Parameter Averages with Limits

*Results below the level of detection (LOD) were included as zeroes in calculation of average.

PART 2 - BOD₅ and TSS

In establishing BOD_5 (Biochemical Oxygen Demand) limitations, the primary intent is to prevent a lowering of dissolved oxygen levels in the receiving water below water quality standards as specified in ss. NR 102.04(4)(a) and (b). The previous permits established BOD_5 and DO limits based on an LAL receiving water classification. These limits are re-evaluated here to be protective of a warmwater sport fish community.

The 26-lb method is the most frequently used approach for calculating BOD₅ limits when resources are not available to develop a detailed water quality model. This simplified model was developed in the 1970's by the Wisconsin Committee on Water Pollution on the Fox, Wisconsin, Oconto, and Flambeau Rivers. Further studies throughout the 1970's proved this model to be relatively accurate. The model has since then been used by the Department on many occasions when resources are not available to perform a site-specific model. The "26" value stems from the following equation:

$$\frac{26 \frac{10 s}{day}}{\frac{ft^{3}}{sec}} * \frac{1 day}{86,400 sec} * \frac{454,000 mg}{1 bs} * \frac{1 ft^{3}}{28.32 L} = 4.8 = 2.4 * 2 \frac{mg}{L}$$
Page 4 of 28
Brillion Wastewater Treatment Facility

The 4.8 has been calculated by taking 2.4 which is the number one receives when converting 26 lbs of BOD/day/cfs into mg/L, multiplied by 2.0 which is the change in the DO level. A typical background DO level for Wisconsin waters is 7 mg/L, so a 2 mg/L decrease is allowed in order to meet the 5 mg/L standard for warm water streams. The above relationship is temperature dependent and an appropriate temperature correction factor is applied. The 26-lb method is based on a typical 24°C summer value for warm water streams. Adjustments for temperature are made using the following equation:

$$k_t = k_{24} \left(0.967^{(T-24)} \right)$$

Where $k_{24} = 26$ lbs of BOD/day/cfs

Calculations based on Full Assimilative Capacity at 7Q10 Conditions:

$$Limitation(mg/L) = 2.4 (DO_{stream} - DO_{std}) \left(\frac{(_7Q_{10} + Q_{eff})}{Q_{eff}} \right) (0.967^{(T-24)})$$

Where:

 $Q_{eff} = effluent design flow = 0.824 MGD$ $DO_{stream} = background dissolved oxygen = 7 mg/L$ $DO_{std} = dissolved oxygen criteria from s. NR 102.04(4) = 5.0 mg/L$ $_7Q_{10} = 0 cfs$ T = Receiving water temperature from s. NR 102.25

The two tables below show the calculated BOD₅ limits based on two different scenarios: an effluent DO of 7 mg/L and an effluent DO of 8 mg/L.

BOD (Effluent Limitations 26 LB Method)	Summer	Winter	
Background	$7-Q_{10}$ (cfs)	0.05	0.05	
Information:	River Temperature (°C)	17	3.3	
Dissolved	Effluent	7	7	
Oxygen	Background	7	7	
mg/L:	Mix DO	7	7	
	Criteria	5	5	
Weekly Ave BOD Effluent	Concentration Limits (mg/L)	6.3	10	
Limitations	Mass (lbs/d)	43	69	

BOD₅ Limitations – Effluent DO of 7 mg/L

The TSS limitations are primarily given to maintain or improve water clarity and are not water quality based. However, the Department typically does not require TSS limits lower than 10 mg/L, otherwise suspended solids limitations are established as the same concentration as the BOD₅ limitations. In this case, the year-round TSS limits are recommended to be 10 mg/L.

BOD ₅ Limitations – Effluent DO of 8 mg/L				
BOD (Summer	Winter		
Background Information:	7-Q ₁₀ (cfs) River Temperature (°C)	0.05 17	0.05 3.3	
Dissolved Oxygen mg/L:	Effluent Background Mix DO Criteria	8 7 7.96 5	8 7 7.96 5	
Weekly Ave BOD Effluent Limitations	Concentration Limits (mg/L) Mass (lbs/d)	9.3 64	15 102	

Attachment #1 BOD₅ Limitations – Effluent DO of 8 mg/L

In this case, the TSS limit for summer would be 10 mg/L and the TSS limit for winter would be 15 mg/L.

Data from the current permit term for BOD₅, TSS, and DO are summarized below:

Effluent Data				
	BOD ₅ mg/L	TSS mg/L	DO mg/L	
1-day P ₉₉	18.5	12.4	12.1	
4-day P ₉₉	9.95	6.28	10.7	
30-day P ₉₉	4.54	2.77	9.92	
Mean	2.27	1.15	9.48	
Std	4.78	3.80	1.02	
Sample size	592	601	1607	
Range	<2 - 65.7	<2 - 31.2	5.1 - 13.7	

*Results below the level of detection (LOD) were included as zeroes in calculation of average.

Expression of Limits:

Sections NR 106.07(3) and NR 205.067(7), Wis. Adm. Code require WPDES permits contain weekly average and monthly average limitations whenever practicable and necessary to protect water quality. **Therefore, monthly average limits for BOD**₅ and **TSS are required** to meet expression of limits requirements in addition to the weekly average limits. Because weekly average BOD₅ and TSS limits are necessary for Brillion, monthly average limits are also required under this code revision. **Therefore, the following limits are recommended** (Brillion may choose which effluent DO option to have):

	Daily minimum	Weekly Average	Monthly Average
BOD5 May – October Nov – April		6.3 mg/L 43 lbs/day 10 mg/L 69 lbs/day	6.3 mg/L 10 mg/L
TSS		10 mg/L	10 mg/L

Attachment #1				
	Daily minimum	Weekly Average	Monthly Average	
Dissolved Oxygen	7.0 mg/L			

Recommended Limits – Effluent DO of 8 mg/L

	Daily minimum	Weekly Average	Monthly Average
BOD₅ May – October Nov – April		9.3 mg/L 64 lbs/day 15 mg/L 102 lbs/day	9.3 mg/L 15 mg/L
TSS May – October Nov – April		10 mg/L 15 mg/L	10 mg/L 15 mg/L
Dissolved Oxygen	8.0 mg/L		

Additional limits to meet the requirements in s. NR 106.07, Wis. Adm Code, are in the table above in bold.

Because there would have been several exceedances of the BOD₅ and TSS limits based on WWSF during the permit term, a compliance schedule to meet the BOD₅ and TSS limits is recommended in the reissued permit. See the TMDL section of this memo for additional TSS mass limits.

There were 6 dissolved oxygen samples that were less than 7.0 mg/L out of 1607 total samples during the permit term. Therefore, no compliance schedule is needed for the daily minimum DO limit of 7.0 mg/L and this limit is recommended to become effective upon reissuance.

There were 75 dissolved oxygen samples that were less than 8.0 mg/L during the permit term. Therefore, a **compliance schedule may be included for the daily minimum DO limit of 8.0 mg/L**.

PART 3 – WATER QUALITY-BASED EFFLUENT LIMITATIONS FOR TOXIC SUBSTANCES – EXCEPT AMMONIA NITROGEN

Permit limits for toxic substances are required whenever any of the following occur:

- 1. The maximum effluent concentration exceeds the calculated limit (s. NR 106.05(3), Wis. Adm. Code)
- 2. If 11 or more detected results are available in the effluent, the upper 99th percentile (or P₉₉) value exceeds the comparable calculated limit (s. NR 106.05(4), Wis. Adm. Code)
- 3. If fewer than 11 detected results are available, the mean effluent concentration exceeds 1/5 of the calculated limit (s. NR 106.05(6), Wis. Adm. Code)

Acute Limits based on 1-Q₁₀

Daily maximum effluent limitations for toxic substances are based on the acute toxicity criteria (ATC), listed in ch. NR 105, Wis. Adm. Code. Previously daily maximum limits for toxic substances were calculated as two times the ATC. However, changes to ch. NR 106, Wis. Code, (September 1, 2016) require the Department to calculate acute limitations using the same mass balance equation as used for

Page 7 of 28 Brillion Wastewater Treatment Facility

other limits along with the $1-Q_{10}$ receiving water low flow to determine if more restrictive effluent limitations are needed to protect the receiving stream from discharges which may cause or contribute to an exceedance of the acute water quality standards. The mass balance equation is provided below.

$$Limitation = (WQC) (Qs + (1-f) Qe) - (Qs - f Qe) (Cs)$$
$$Qe$$

Where:

- WQC =Acute toxicity criterion or secondary acute value according to ch. NR 105, Wis. Adm. Code.
- $Qs = average minimum 1-day flow which occurs once in 10 years (1-day Q_{10})$

if the 1-day Q_{10} flow data is not available = 80% of the average minimum 7-day flow which occurs once in 10 years (7-day Q_{10}).

Qe = Effluent flow (in units of volume per unit time) as specified in s. NR 106.06(4)(d), Wis. Adm. Code.

f = Fraction of the effluent flow that is withdrawn from the receiving water, and

Cs = Background concentration of the substance (in units of mass per unit volume) as specified in s. NR 106.06(4)(e), Wis. Adm. Code.

If the receiving water is effluent dominated under low stream flow conditions, the $1-Q_{10}$ method of limit calculation produces the most stringent daily maximum limitations and should be used while making reasonable potential determinations. This is not the case for Brillion.

The following tables list the calculated WQBELs for this discharge along with the results of effluent sampling. All concentrations are expressed in terms of micrograms per Liter (μ g/L), except for hardness and chloride (mg/L).

Daily Maximum Limits based on Acute Toxicity Criteria (ATC)

RECEIVING WATER FLOW = 0.04 cfs (1-Q₁₀ (estimated as 80% of 7-Q₁₀)), as specified in s. NR 106.06(3)(bm), Wis. Adm. Code.

	REF.		MEAN	MAX.	1/5 OF	MEAN		1-day
	HARD.*	ATC	BACK-	EFFL.	EFFL.	EFFL.	1-day	MAX.
SUBSTANCE	mg/L		GRD.	LIMIT**	LIMIT	CONC.	P99	CONC.
Arsenic		340		350	70.1	< 0.28		
Cadmium	431	55.1	0.2	56.8	11.4	<1.3		
Chromium	301	4446		4585	917	<2.5		
Copper	431	61.6	12.3	63.1			5.4	5.0
Lead	356	365	9.9	376	75.2	<5.9		
Nickel	268	1080	20	1114	223	4.8		
Zinc	333	345	28.3	355	70.9	21.4		
Chloride (mg/L)		757	31.1	780			1070	1150

* The indicated hardness may differ from the effluent hardness because the effluent hardness exceeded the maximum range in ch. NR 105, Wis. Adm. Code, over which the acute criteria are applicable. In that case, the maximum of the range is used to calculate the criterion.

* * Per the changes to s. NR 106.07(3), Wis. Adm. Code, effective 09/01/2016 consideration of ambient concentrations and 1-Q₁₀ flow rates yields a more restrictive limit than the 2 × ATC method of limit calculation.

Weekly Average Limits based on Chronic Toxicity Criteria (CTC)

RECEIVING WATER FLOW = 0.0125 cfs (¹/₄ of the 7-Q₁₀), as specified in s. NR 106.06(4)(c), Wis. Adm. Code

Page 8 of 28 Brillion Wastewater Treatment Facility

			Attachinen				
	REF.		MEAN	WEEKLY	1/5 OF	MEAN	
	HARD.*	CTC	BACK-	AVE.	EFFL.	EFFL.	4-day
SUBSTANCE	mg/L		GRD.	LIMIT	LIMIT	CONC.	P ₉₉
Arsenic		152		154	30.7	< 0.28	
Cadmium	175	3.82	0.2	3.86	0.77	<1.3	
Chromium	301	326		329	65.8	<2.5	
Copper	356	30.7	12.3	30.9			4.7
Lead	356	95.5	9.9	96.3	19.3	<5.9	
Nickel	268	120	20	121	24.2	4.80	
Zinc	333	345	28.3	348	69.6	21.4	
Chloride (mg/L)		395	31.1	399			782

* The indicated hardness may differ from the receiving water hardness because the receiving water hardness exceeded the maximum range in ch. NR 105, Wis. Adm. Code, over which the chronic criteria are applicable. In that case, the maximum of the range is used to calculate the criterion.

Monthly Average Limits based on Wildlife Criteria (WC)

The effluent characterization did not include any effluent sampling results for substances for which Wildlife Criteria exist.

Monthly Average Limits based on Human Threshold Criteria (HTC)

RECEIVING WATER FLOW = 0.1477 cfs (¹/₄ of Harmonic Mean), as specified in s. NR 106.06(4), Wis. Adm. Code.

		MEAN	MO'LY	1/5 OF	MEAN
	HTC	BACK-	AVE.	EFFL.	EFFL.
SUBSTANCE		GRD.	LIMIT	LIMIT	CONC.
Cadmium	370	0.2	370	74.0	<1.3
Chromium (+3)	3818000		3818000	763600	<2.5
Lead	140	9.9	140	28.0	<5.9
Nickel	43000	20	43000	8600	4.8

Monthly Average Limits based on Human Cancer Criteria (HCC)

RECEIVING WATER FLOW = 0.1477 cfs (¼ of Harmonic Mean), as specified in s. NR 106.06(4), Wis. Adm. Code.

		MEAN	MO'LY	1/5 OF	MEAN
	HCC	BACK-	AVE.	EFFL.	EFFL.
SUBSTANCE		GRD.	LIMIT	LIMIT	CONC.
Arsenic	13.3		13.3	2.66	< 0.28

In addition to evaluating the need for limits for each individual substance for which HCC exist, s. NR 106.06(8), Wis. Adm. Code, requires the evaluation of the cumulative cancer risk. Because no effluent limits are needed based on HCC, determination of the cumulative cancer risk is not needed per s. NR 106.06(8), Wis. Adm. Code.

Conclusions and Recommendations

Based on a comparison of the effluent data and calculated effluent limitations, effluent limitations are required for chloride.

<u>Chloride</u> – Considering available effluent data from the current permit term (07/01/2018 - 08/14/2024), the 1-day P₉₉ chloride concentration is 1070 mg/L, and the 4-day P₉₉ of effluent data is 782 mg/L.

Because the 1-day and 4-day P₉₉ exceed the calculated daily maximum and weekly average WQBELs, effluent limits are needed in accordance with ss. NR 106.05(4)(a) and (b), Wis. Adm. Code.

However, Subchapter VII of ch. NR 106, Wis. Adm. Code, provides for a variance from water quality standards for this substance, and Brillion has requested such a variance. That variance may be granted subject to the following conditions:

- 1) The permit shall include an "Interim" limitation intended to prevent an increase in the discharge of Chloride;
- 2) The permit shall specify "Source Reduction Measures" to be implemented during the permit term, with periodic progress reports; and
- 3) The permit shall include a "Target Limit" or "Target Value" to gage the effectiveness of the Source Reduction Measures, and progress toward the WQBELs.

The graphs below show the effluent data from the current permit term, compared to the daily maximum and weekly average limits:

Interim Limits for Chloride

Section NR 106.82(4), Wis. Adm. Code, defines a "Daily maximum interim limitation" as either the 1day P₉₉ concentration or no greater than 105% of the highest representative data. The current permit does not have an interim limit for the daily maximum limit. **It's recommended that the interim daily maximum limit be 1050 mg/L** which is less than the 1-day P₉₉ but it has not been exceeded since 2019.

Section NR 106.82(9), Wis. Adm. Code, defines a "Weekly average interim limitation" as either the 4day P₉₉ concentration or 105% of the highest weekly average concentration of the representative data. The current permit has an interim limit of 1,100 mg/L as a monthly average. Most reported data was well below this interim limit, with one exceedance in March 2019. **The monthly average interim limit is recommended to be 780 mg/L, which is equal to the 4-day P**₉₉, rounded to two significant figures.

Target limits and permit language for Source Reduction Measures are not recommended as part of this evaluation. These should follow contact with Brillion. Though if the Department and Brillion are unable to reach agreement on all the terms of a Chloride Variance, the calculated limits described earlier should be included in the permit, in accordance with s. NR 106.83(3), Wis. Adm. Code.

Page 12 of 28 Brillion Wastewater Treatment Facility

Chloride Monitoring Recommendations

Four samples per month (on consecutive days) are recommended. This allows for averaging of the results to compare with the interim limit and allows the use of the average in determining future interim limits, and degree of success with chloride reduction measures.

In the absence of a variance, Brillion would be subject to the WQBEL of 760 mg/L as a daily maximum and daily maximum mass limit of 5,400 lbs/day (780 mg/L \times 0.824 MGD \times 8.34). Brillion would also be subject to the WQBEL of 400 mg/L as a weekly average; the weekly average mass limit of 2,700 lbs/day (399 mg/L \times 0.824 MGD \times 8.34); and an alternative wet weather mass limit.

<u>Mercury</u> – The permit application did not require monitoring for mercury because Brillion is categorized as a minor facility as defined in s. NR 200.02(8), Wis. Adm. Code. In accordance with s. NR 106.145(3)(a)3, Wis. Adm. Code, a minor municipal discharger shall monitor, and report results of influent and effluent mercury monitoring once every three months if, "there are two or more exceedances in the last five years of the high-quality sludge mercury concentration of 17 mg/kg specified in s. NR 204.07(5), Wis. Adm. Code." A review of the past five years of sludge characteristics data reveals that all the sample results are within expected analytical ranges and well below the 17 mg/kg level. All samples were reported as nondetect from 04/05/2021 - 06/13/2023. Therefore, **no mercury monitoring is recommended at Outfall 001.**

<u>PFOS and PFOA</u> – The need for PFOS and PFOA monitoring is evaluated in accordance with s. NR 106.98(2), Wis. Adm. Code. Previous monitoring produced a PFOS result of 1.32 ng/L and a PFOA result of 1.31 ng/L which are less than one fifth of the respective criteria for each substance. Based on the types of indirect dischargers contributing to the collection system (metal finishing/plating), **PFOS and PFOA monitoring is recommended at a once every two months frequency.**

PART 4 – WATER QUALITY-BASED EFFLUENT LIMITATIONS FOR AMMONIA NITROGEN

The State of Wisconsin promulgated revised water quality standards for ammonia nitrogen in ch. NR 105, Wis. Adm. Code, effective March 1, 2004 which includes criteria based on both acute and chronic toxicity to aquatic life. The current permit has daily maximum, weekly average and monthly average limits. These limits are re-evaluated at this time due to the following changes:

- Subchapter IV of ch. NR 106, Wis. Adm. Code allows limits based on available dilution instead of limits set to twice the acute criteria.
- The immediate receiving water is now considered WWSF, rather than LAL.
- The maximum expected effluent pH has changed

Daily Maximum Limits based on Acute Toxicity Criteria (ATC)

Daily maximum limitations are based on acute toxicity criteria in ch. NR 105, Wis. Adm. Code, which are a function of the effluent pH and the receiving water classification. The acute toxicity criterion (ATC) for ammonia is calculated using the following equation:

ATC in mg/L =
$$[A \div (1 + 10^{(7.204 - pH)})] + [B \div (1 + 10^{(pH - 7.204)})]$$

Where:

A = 0.411 and B = 58.4 for a Warm Water Sport fishery, and pH (s.u.) = that characteristic of the <u>effluent.</u>

Page 13 of 28 Brillion Wastewater Treatment Facility

The effluent pH data was examined as part of this evaluation. A total of 1610 sample results were reported from 07/03/2018 - 08/30/2024. The maximum reported value was 9.1 s.u. (Standard pH Units). The effluent pH was 8.23 s.u. or less 99% of the time. The 1-day P₉₉, calculated in accordance with s. NR 106.05(5), Wis. Adm. Code, is 8.27 s.u. The mean plus the standard deviation multiplied by a factor of 2.33, an estimate of the upper ninety ninth percentile for a normally distributed dataset, is 8.26 s.u. Therefore, a value of 8.23 s.u. is believed to represent the maximum reasonably expected pH, and therefore most appropriate for determining daily maximum limitations for ammonia nitrogen. Substituting a value of 8.23 s.u. into the equation above yields an ATC = 5.4 mg/L.

Daily Maximum Ammonia Nitrogen Effluent Limitations Calculation Method

In accordance with s. NR 106.32(2), Wis. Adm. Code daily maximum ammonia limitations are calculated using the the 1- Q_{10} receiving water low flow if it is determined that the previous method of acute ammonia limit calculation (2×ATC) is not sufficiently protective of the fish and aquatic life. The more restrictive calculated limits shall apply.

The calculated daily maximum ammonia nitrogen effluent limits using the mass balance approach with the 1-Q₁₀ (estimated as 80 % of 7-Q₁₀) and the $2 \times ATC$ approach are shown below.

	Ammonia Nitrogen Limit mg/L
2×ATC	11
1-Q ₁₀	5.6

Daily Maximum Ammonia Nitrogen Determination

The $1-Q_{10}$ method yields the most stringent limits for Brillion. The current permit has variable daily maximum effluent limits based on effluent pH. Presented below is a table of daily maximum limitations corresponding to various effluent pH values. Use of this table is not necessarily recommended in the permit, but it is presented herein for informational purposes.

Effluent pH s.u.	Limit mg/L	Effluent pH s.u.	Limit mg/L	Effluent pH s.u.	Limit mg/L	
$6.0 \le pH \le 6.1$	56	$7.0 < pH \leq 7.1$	34	$8.0 < pH \leq 8.1$	7.2	
$6.1 < pH \le 6.2$	55	$7.1 < pH \leq 7.2$	30	$8.1 < pH \leq 8.2$	5.9	
$6.2 < pH \leq 6.3$	54	$7.2 < pH \leq 7.3$	27	$8.2 < pH \leq 8.3$	4.9	
$6.3 < pH \leq 6.4$	52	$7.3 < pH \leq 7.4$	24	$8.3 < pH \leq 8.4$	4.0	
$6.4 < pH \le 6.5$	50	$7.4 < pH \leq 7.5$	21	$8.4 < pH \leq 8.5$	3.3	
$6.5 < pH \leq 6.6$	48	$7.5 < pH \leq 7.6$	18	$8.5 < pH \leq 8.6$	2.7	
$6.6 < pH \le 6.7$	46	$7.6 < pH \leq 7.7$	15	$8.6 < pH \leq 8.7$	2.3	
$6.7 < pH \leq 6.8$	43	$7.7 < pH \leq 7.8$	13	$8.7 < pH \leq 8.8$	1.9	
$6.8 < pH \le 6.9$	40	$7.8 < pH \le 7.9$	10	$8.8 < pH \le 8.9$	1.6	
$6.9 < pH \leq 7.0$	37	$7.9 < pH \leq 8.0$	8.7	$8.9 < pH \leq 9.0$	1.4	

Daily Maximum Ammonia Nitrogen Limits - WWSF

Page 14 of 28 Brillion Wastewater Treatment Facility

Weekly and Monthly Average Limits based on Chronic Toxicity Criteria (CTC)

The ammonia limit calculation also warrants evaluation of weekly and monthly average limits based on chronic toxicity criteria for ammonia, because those limits relate to the assimilative capacity of the receiving water.

Weekly average and monthly average limits for ammonia nitrogen are based on chronic toxicity criteria in ch. NR 105, Wis. Adm. Code.

The 30-day chronic toxicity criterion (CTC) for ammonia in waters classified as a Warm Water Sport Fish Community is calculated by the following equation, according to subchapter IV of NR 106, Wis. Adm. Code.

 $CTC = E \times \{[0.0676 \div (1 + 10^{(7.688 - pH)})] + [2.912 \div (1 + 10^{(pH - 7.688)})]\} \times C$ Where: pH = the pH (s.u.) of the <u>receiving water</u>,<math display="block">E = 0.854, $C = the minimum of 2.85 \text{ or } 1.45 \times 10^{(0.028 \times (25 - T))} - (Early Life Stages Present), \text{ or}$ $C = 1.45 \times 10^{(0.028 \times (25 - T))} - (Early Life Stages Absent), \text{ and}$ T = the temperature (°C) of the receiving water - (Early Life Stages Present), orT = the maximum of the actual temperature (°C) and 7 - (Early Life Stages Absent)

The 4-day criterion is equal to the 30-day criterion multiplied by 2.5. The 4-day criteria are used in a mass-balance equation with the 7-Q₁₀ (4-Q₃, if available) to derive weekly average limitations. And the 30-day criteria are used with the 30-Q₅ (estimated as 85% of the 7-Q₂ if the 30-Q₅ is not available) to derive monthly average limitations. The stream flow value is further adjusted to temperature; 100% of the flow is used if the Temperature \geq 16 °C, 25% of the flow is used if the Temperature \geq 11 °C but < 16 °C.

Section NR 106.32 (3), Wis. Adm. Code, provides a mechanism for less stringent weekly average and monthly average effluent limitations when early life stages (ELS) of critical organisms are absent from the receiving water. This applies only when the water temperature is less than 14.5 °C, during the winter and spring months. Burbot, an early spawning species, are not believed to be present in the unnamed tributary. So "ELS Absent" criteria apply from October through March, and "ELS Present" criteria will apply from April through September for a warmwater sport fish classification.

Brillion collected instream pH and temperature data in 2011 which are used in this evaluation. "Default" background ammonia concentrations are used.

to comy and monthly minimum a through minity with bi						
		Spring	Summer	Fall	Winter	
		April & May	June – Sept.	Oct. & Nov.	Dec. – March	
Effluent Flow	Qe (MGD)	0.824	0.824	0.824	0.824	
	$7-Q_{10}$ (cfs)	0.05	0.05	0.05	0.05	
	$7-Q_2$ (cfs)	0.18	0.18	0.18	0.18	
Background	Ammonia (mg/L)	0.16	0.04	0.05	0.05	
Information	Temperature (°C)	1.9	10	21	11	
	Temperature (°C)	9.0	12.2	29.3	19.5	
	pH (s.u.)	7.51	7.79	7.85	7.85	

Weekly and Monthly Ammonia Nitrogen Limits - WWSF

Page 15 of 28 Brillion Wastewater Treatment Facility

		Spring	Summer	Fall	Winter
		April & May	June – Sept.	Oct. & Nov.	Dec. – March
	% of Flow used	25	25	100	50
	Reference Weekly Flow (cfs)	0.0125	0.0125	0.05	0.025
	Reference Monthly Flow (cfs)	0.038	0.038	0.153	0.077
	4-day Chronic				
	Early Life Stages Present	8.1	2.9		
Critorio	Early Life Stages Absent			5.4	15
Uniterna mg/I	30-day Chronic				
mg/L	Early Life Stages Present	3.2	1.2		
	Early Life Stages Absent			2.2	6.2
	Weekly Average				
Tffwort	Early Life Stages Present	8.1	3.0		
Limitations	Early Life Stages Absent			5.5	16
	Monthly Average				
mg/L	Early Life Stages Present	3.3	1.3		
	Early Life Stages Absent			2.3	6.4

Effluent Data

The following table evaluates the statistics based upon ammonia data reported from 07/02/2018 - 08/13/2024, with those results being compared to the calculated limits to determine the need to include ammonia limits in Brillion's permit for the respective month ranges. That need is determined by calculating 99th upper percentile (or P₉₉) values for ammonia during each of the month ranges and comparing the daily maximum values to the daily maximum limit.

Ammonia Autosch Emucht Data						
Ammonia Nitrogen mg/L	April & May	June – Sept.	Oct. – Nov.	Dec. – March		
1-day P ₉₉	10.6	4.56	1.68	1.19		
4-day P ₉₉	5.90	2.78	0.98	0.66		
30-day P ₉₉	2.54	1.16	0.41	0.29		
Mean*	1.14	0.38	0.16	0.13		
Std	2.79	1.45	0.48	0.30		
Sample size	53	109	49	97		
Range	< 0.04 - 9.57	< 0.038 - 9.3	< 0.038 - 2.33	< 0.038 - 1.79		

Ammonia Nitrogen Effluent Data

*Values lower than the level of detection were substituted with a zero

Based on this comparison, there is no reasonable potential for the discharge to exceed any of the calculated ammonia nitrogen limits.

The permit currently has daily maximum limits November – April and weekly and monthly limits yearround. Where there are existing ammonia nitrogen limits in the permit, the limits must be retained regardless of reasonable potential, consistent with s. NR 106.33(1)(b), Wis. Adm. Code:

(b) If a permittee is subject to an ammonia limitation in an existing permit, the limitation shall be included in any reissued permit. Ammonia limitations shall be included in the permit if the permitted facility will be providing treatment for ammonia discharges.

Antidegradation

The calculated weekly average limit of 8.1 mg/L for April & May is less restrictive than the limit of 8.0 mg/L in the current permit as well as the calculated monthly average of 3.3 mg/L compared to 3.2 mg/L in the current permit. There were two days that exceeded 8.0 mg/L; however, they were caused by plant upsets (power outage and wasting timer failure). Without a demonstration of need for a higher limit in accordance with s. NR 207.04, Wis. Adm. Code, the current limit of 8.0 mg/L must be continued in the reissued permit.

Conclusions and Recommendations

In summary, after rounding to two significant figures, the following ammonia nitrogen limitations are recommended. No mass limitations are recommended in accordance with s. NR 106.32(5), Wis. Adm Code.

Final Annionia Niti ogen Linnts					
	Weekly	Monthly			
	Average	Average			
	mg/L	mg/L			
April & May	8.0	3.2			
June – September	3.0	1.3			
October & November	5.5	2.3			
December – March	16	6.4			

Final Ammonia Nitrogen Limits

The following table shows the variable daily maximum limits for the months of November – April:

Effluent pH s.u.	Limit mg/L	Effluent pH s.u.	Limit mg/L	Effluent pH s.u.	Limit mg/L
$6.0 \le pH \le 6.1$	56	$7.0 < pH \leq 7.1$	34	$8.0 < pH \leq 8.1$	7.2
$6.1 < pH \leq 6.2$	55	$7.1 < pH \leq 7.2$	30	$8.1 < pH \leq 8.2$	5.9
$6.2 < pH \leq 6.3$	54	$7.2 < pH \leq 7.3$	27	$8.2 < pH \leq 8.3$	4.9
$6.3 < pH \leq 6.4$	52	$7.3 < pH \leq 7.4$	24	$8.3 < pH \leq 8.4$	4.0
$6.4 < pH \le 6.5$	50	$7.4 < pH \leq 7.5$	21	$8.4 < pH \le 8.5$	3.3
$6.5 < pH \leq 6.6$	48	$7.5 < pH \leq 7.6$	18	$8.5 < pH \leq 8.6$	2.7
$6.6 < pH \leq 6.7$	46	$7.6 < pH \leq 7.7$	15	$8.6 < pH \leq 8.7$	2.3
$6.7 < pH \leq 6.8$	43	$7.7 < pH \leq 7.8$	13	$8.7 < pH \leq 8.8$	1.9
$6.8 < pH \le 6.9$	40	$7.8 < pH \le 7.9$	10	$8.8 < pH \le 8.9$	1.6
$6.9 < pH \le 7.0$	37	$7.9 < pH \le 8.0$	8.7	$8.9 < pH \le 9.0$	1.4

Daily Maximum Ammonia Nitrogen Limits

PART 5 – WATER QUALITY-BASED EFFLUENT LIMITATIONS FOR BACTERIA

Brillion had previously been exempted from disinfection based on the limited aquatic life or limited forage fish community classification of the receiving water. Section NR 210.06(3)(g), Wis. Adm. Code, states that disinfection decisions may be made based on the hydrologic classifications listed in s. NR 104.02(1), Wis. Adm. Code (**not** on the water quality classifications - i.e., limited forage fish, limited aquatic life - that are defined in s. NR 104.02(3), Wis. Adm. Code). The receiving water classification has since been updated to be considered warmwater sport fish and no longer considered LAL.

Discharges to noncontinuous streams with $Q_{7,10}$ values < 0.1 cfs usually result in effluent-dominated situations. The risk of illness is related to the concentration of E. coli and therefore dilution is an important consideration when considering risk to human health. Since little to no dilution is present in these situations, disinfection should not be exempted based solely on this hydrological classification.

The Department has considered the information required by s. NR 210.06(3), Wis. Adm. Code, and has determined that the discharge cannot meet bacteria limits without disinfection. Section NR 210.06(2)(a)1, Wis. Adm. Code, includes two limits which must be included in permits for facilities which are required to disinfect:

- 1. The geometric mean of *E. coli* bacteria in effluent samples collected in any calendar month may not exceed 126 counts/100 mL.
- 2. No more than 10 percent of *E. coli* bacteria samples collected in any calendar month may exceed 410 counts/100 mL.

These limits are required during May through September.

PART 6 – PHOSPHORUS

Technology-Based Effluent Limit

Subchapter II of Chapter NR 217, Wis. Adm. Code, requires municipal wastewater treatment facilities that discharge greater than 150 pounds of Total Phosphorus per month to comply with a monthly average limit of 1.0 mg/L, or an approved alternative concentration limit.

Because Brillion currently has a limit of 1.0 mg/L, this limit should be included in the reissued permit. This limit remains applicable unless a more stringent WQBEL is given.

Northeast Lakeshore TMDL

Total phosphorus (TP) effluent limits in lbs/day are calculated as recommended in the *TMDL* Development and Implementation Guidance: Integrating the WPDES and Impaired Waters Programs (April 2020) and are based on the annual phosphorus wasteload allocation (WLA) given in pounds per year. This WLA found in Appendix K of the Total Maximum Daily Loads for Total Phosphorus and Total Suspended Solids in the Northeast Lakeshore Region report are expressed as maximum annual loads (lbs/year). The annual WLA for Brillion is 1,081 lbs/year.

For the reasons explained in the April 30, 2012 paper entitled *Justification for Use of Monthly, Growing Season and Annual Average Periods for Expression of WPDES Permit Limits for Phosphorus Discharges in Wisconsin*, WDNR has determined that the phosphorus WQBELs set equal to WLAs would not be consistent with the assumptions and requirements of the TMDL. Therefore, limits given to facilities included in the Northeast Lakeshore Basin TMDL are given monthly average mass limits and, if the equivalent effluent concentration is less than or equal to 0.3 mg/L, six-month average mass limits are also included. The following equation shows the calculation of equivalent effluent concentration:

TP Equivalent Effluent Concentration = WLA ÷ (365 days/yr * Flow Rate * Conversion Factor) = 1,081 lbs/yr ÷ (365 days/yr * 0.824 MGD * 8.34) = 0.43 mg/L

Since this value is greater than 0.3 mg/L, the WLA should be expressed as a monthly average mass limit for total phosphorus and no six-month average limit is required.

Page 18 of 28 Brillion Wastewater Treatment Facility

TP Monthly Average Permit Limit = WLA \div 365 days/yr * multiplier = (1,081 lbs/yr \div 365 days/yr) * 1.9 = 5.6 lbs/day

The multiplier used in the six-month average calculation was determined according to the implementation guidance. A coefficient of variation was calculated, based on phosphorus mass monitoring data, to be 0.6. This is the standard deviation divided by the mean of mass data. This value, along with monitoring frequency, is used to select the multiplier. The current permit specifies phosphorus monitoring as weekly; if a different monitoring frequency is used, the stated limits should be reevaluated.

Monthly average mass effluent limits are recommended for this discharge. The limits are equivalent to a concentration of 0.82 mg/L at the facility design flow of 0.824 MGD.

The TMDL establishes TP wasteload allocations to reduce the loading in the entire watershed including WLAs to meet water quality standards for tributaries in the Northeast Lakeshore Basin. Therefore, WLAbased WQBELs are protective of immediate receiving waters and TP WQBELs derived according to s. NR 217.13, Wis. Adm. Code are not required.

Since wasteload allocations are expressed as annual loads (lbs/yr), permits with TMDL-derived monthly average permit limits should require the permittee to calculate and report rolling 12-month sums of total monthly loads for TP. Rolling 12-month sums can be compared directly to the annual wasteload allocation.

The current permit has a compliance schedule to meet phosphorus limits of 0.075 mg/L as a six-month average and 0.225 mg/L as a monthly average per ch. NR 217, Wis. Adm. Code. Because these limits have not become effective yet, they can be removed without an antidegradation evaluation.

Effluent Data

The following table summarizes effluent total phosphorus monitoring data from 07/01/2018 - 08/27/2024. The mass data was calculated using effluent flow rates reported on the same day.

i otal i nospiloi us Elliuent Data					
	Phosphorus mg/L	Phosphorus lbs/day			
1-day P ₉₉	2.02	10.1			
4-day P ₉₉	1.23	6.11			
30-day P ₉₉	0.83	4.10			
Mean	0.64	3.18			
Std	0.39	1.95			
Sample size	626	626			
Range	0.118 - 7.09	0 - 20			

Total Phosphorus Effluent Data

Interim Limit

An interim limit is required per s. NR 217.17, Wis. Adm. Code, when a compliance schedule is needed in the permit to meet the WQBEL. The interim limit should reflect a concentration that the facility is able to meet without investing in additional "temporary" treatment, but also should prevent backsliding from

Page 19 of 28 Brillion Wastewater Treatment Facility

current conditions. Therefore, it is recommended that the interim limit be set equal to 1.0 mg/L for permit reissuance along with requirements for optimization of phosphorus removal. This interim limit is the same as the current technology-based limit, but the reissued permit will also include requirements for optimization of phosphorus removal.

PART 7 – TOTAL SUSPENDED SOLIDS

Total Suspended Solids (TSS) effluent limits in lbs/day are calculated as recommended in the *TMDL* Development and Implementation Guidance: Integrating the WPDES and Impaired Waters Programs (April 2020). This WLAs found in Appendix I of the *Total Maximum Daily Loads for Total Phosphorus* and Total Suspended Solids in the Northeast Lakeshore Region report are expressed as maximum annual loads (lbs/year). The WLA for Brillion is 25,897 lbs/year.

Revisions to chs. NR 106 and 205, Wis. Adm. Code align Wisconsin water quality-based effluent limits with 40 CFR 122.45(d), which requires WPDES permits to contain the following concentration limits, whenever practicable and necessary to protect water quality:

- Weekly average and monthly average limitations for continuous discharges subject to ch. NR 210.
- Daily maximum and monthly average limitations for all other discharges.

Brillion is a municipal treatment facility and is therefore subject to weekly average and monthly average TSS limits derived from TSS annual WLAs.

TSS Monthly Average Permit Limit = WLA \div 365 days/yr * multiplier = (25,897 lbs/yr \div 365 days/yr) * 1.59 = 113 lbs/day

TSS Weekly Average Permit Limit = WLA ÷ 365 days/yr * multiplier = (25,897 lbs/yr ÷ 365 days/yr) * 2.37 = 168 lbs/day

The multiplier used in the weekly average and monthly average calculation was determined according to implementation guidance. A coefficient of variation was calculated, based on TSS mass monitoring data, to be 6.5. This is the standard deviation divided by the mean of mass data. However, it is believed that the optimization of the wastewater treatment system to achieve the WLA-derived permit limits will reduce effluent variability. Thus, the maximum anticipated coefficient of variation expected by the facility is 0.6. This value, along with monitoring frequency, is used to select the multiplier. The current permit specifies TSS monitoring as 2/week; if a different monitoring frequency is used, the stated limits should be reevaluated.

Weekly average and monthly average mass effluent limits are recommended for this discharge. The limits are equivalent to a concentration of 24 mg/L and 16 mg/L, respectively, at the facility design flow of 0.824 MGD.

Since wasteload allocations are expressed as annual loads (lbs/yr), permits with TMDL-derived monthly average permit limits should require the permittee to calculate and report rolling 12-month sums of total monthly loads for TSS. Rolling 12-month sums can be compared directly to the annual wasteload allocation.

Page 20 of 28 Brillion Wastewater Treatment Facility

Effluent Data

The following table summarizes effluent total suspended solids monitoring data from 07/01/2018 - 08/31/2024. The mass data was calculated using effluent flow rates reported on the same day.

i otur Suspended Sonds Emident Dutu					
	TSS mg/L	TSS lbs/day			
1-day P ₉₉	12.4	99.3			
4-day P ₉₉	6.28	56.4			
30-day P ₉₉	2.77	23.6			
Mean*	1.15	6.54			
Std	3.80	42.9			
Sample size	601	601			
Range	<2-31.2	0 - 404			

Total Suspended Solids Effluent Data

*Results below the level of detection (LOD) were included as zeroes in calculation of average.

Brillion can currently meet the TSS mass limits, and a compliance schedule is not needed.

PART 8 – WATER QUALITY-BASED EFFLUENT LIMITATIONS FOR THERMAL

Surface water quality standards for temperature took effect on October 1, 2010. These regulations are detailed in chs. NR 102 (Subchapter II – Water Quality Standards for Temperature) and NR 106 (Subchapter V – Effluent Limitations for Temperature) of the Wisconsin Administrative Code. Daily maximum and weekly average temperature criteria are available for the 12 different months of the year depending on the receiving water classification.

In accordance with s. NR 106.53(2)(b), Wis. Adm. Code, the highest daily maximum flow rate for a calendar month is used to determine the acute (daily maximum) effluent limitation. In accordance with s. NR 106.53(2)(c), Wis. Adm. Code, the highest 7-day rolling average flow rate for a calendar month is used to determine the sub-lethal (weekly average) effluent limitation. These values were based off actual flow reported from 07/01/2018 - 08/31/2024.

	Calculated Effluent Limit				
Month	Weekly Average Effluent Limitation (°F)	Daily Maximum Effluent Limitation (°F)			
JAN	49	76			
FEB	50	76			
MAR	52	77			
APR	55	79			

Monthly Temperature Effluent Data & Limits

Page 21 of 28 Brillion Wastewater Treatment Facility

Attachment #1				
	Calculated Effluent Limit			
Month	Weekly Average Effluent Limitation	Daily Maximum Effluent Limitation		
	(°F) (°F)			
MAY	65	82		
JUN	76	84		
JUL	81	85		
AUG	81	84		
SEP	73	82		
OCT	61	80		
NOV	49	77		
DEC	49	76		

Reasonable Potential

Permit limits for temperature are recommended based on the procedures in s. NR 106.56, Wis. Adm. Code.

- An acute limit for temperature is recommended for each month in which the representative daily maximum effluent temperature for that month exceeds the acute WQBEL. The representative daily maximum effluent temperature is the greater of the following:
 - (a) The highest recorded representative daily maximum effluent temperature
 - (b) The projected 99th percentile of all representative daily maximum effluent
 - temperatures
- A sub-lethal limitation for temperature is recommended for each month in which the representative weekly average effluent temperature for that month exceeds the weekly average WQBEL. The representative weekly average effluent temperature is the greater of the following:
 - (a) The highest weekly average effluent temperature for the month.
 - (b) The projected 99th percentile of all representative weekly average effluent temperatures for the month

In accordance with s. NR 106.56(12), Wis. Adm. Code, when representative effluent temperature data is not available at the time of permit reissuance, the proposed permit shall include effluent temperature monitoring, WQBELs for temperature, and a compliance schedule to meet the temperature limits.

The following general options are available for a facility to explore potential relief from the temperature limits:

- Effluent monitoring data: Verification or additional effluent monitoring (flow and/or temperature) may be appropriate if there were questions on the representativeness of the current effluent data.
- Monthly low receiving water flows: Contract with USGS to generate monthly low flow estimates for the receiving water to be used in place of the annual low flow.
- Mixing zone studies: A demonstration of rapid and complete mixing may allow for the use of a mixing zone other than the default 25%.

- Dissipative cooling demonstration: Effluent limitations based on sub-lethal criteria may be adjusted based on the potential for heat dissipation from municipal treatment plants as described in s. NR 106.59(4), Wis. Adm. Code.
- Collection of site-specific ambient temperature: default background temperatures for streams in Wisconsin, so actual data from the direct receiving water may provide for relaxed thermal limits but only if the site-specific temperatures are <u>lower</u> than the small stream defaults used in the above tables
- A variance to the water quality standard: This is typically considered to be the least preferable and most complex option as it requires the evaluation of the other alternatives.

These options are explained in additional detail in the August 15, 2013 Department *Guidance for Implementation of Wisconsin's Thermal Water Quality Standards* http://dnr.wi.gov/topic/surfacewater/documents/ThermalGuidance2edition8152013.pdf

PART 9 – WHOLE EFFLUENT TOXICITY (WET)

WET testing is used to measure, predict, and control the discharge of toxic materials that may be harmful to aquatic life. In WET tests, organisms are exposed to a series of effluent concentrations for a given time and effects are recorded. Decisions below related to the selection of representative data and the need for WET limits were made according to ss. NR 106.08 and 106.09, Wis. Adm. Code. WET monitoring frequency and toxicity reduction evaluation (TRE) recommendations were made using the best professional judgment of staff familiar with the discharge after consideration of the guidance in the *Whole Effluent Toxicity (WET) Program Guidance Document (2022)*.

- Acute tests predict the concentration that causes lethality of aquatic organisms during a 48 to 96-hour exposure. To assure that a discharge is not acutely toxic to organisms in the receiving water, WET tests must produce a statistically valid LC₅₀ (Lethal Concentration to 50% of the test organisms) greater than 100% effluent, according to s. NR 106.09(2)(b), Wis. Adm Code.
- Chronic tests predict the concentration that interferes with the growth or reproduction of test organisms during a seven-day exposure. To assure that a discharge is not chronically toxic to organisms in the receiving water, WET tests must produce a statistically valid IC₂₅ (Inhibition Concentration) greater than the instream waste concentration (IWC), according to s. NR 106.09(3)(b), Wis. Adm Code. The IWC is an estimate of the proportion of effluent to total volume of water (receiving water + effluent). The IWC of **99%** shown in the WET Checklist summary below was calculated according to the following equation, as specified in s. NR 106.03(6), Wis. Adm Code:

IWC (as %) = $O_e \div \{(1 - f) O_e + O_s\} \times 100$

Where:

 Q_e = annual average flow = 0.824 MGD = 1.275 cfs

f = fraction of the Q_e withdrawn from the receiving water = 0

- $Q_s = \frac{1}{4}$ of the 7- $Q_{10} = 0.05 \text{ cfs} \div 4 = 0.0125 \text{ cfs}$
- According to the *State of Wisconsin Aquatic Life Toxicity Testing Methods Manual* (s. NR 219.04, Table A, Wis. Adm. Code), a synthetic (standard) laboratory water may be used as the dilution water and primary control in acute WET tests, unless the use of different dilution water is approved by the Department prior to use. The primary control water must be specified in the WPDES permit.
- According to the *State of Wisconsin Aquatic Life Toxicity Testing Methods Manual* (s. NR 219.04, Table A, Wis. Adm. Code), receiving water must be used as the dilution water and primary control in chronic WET tests, unless the use of different dilution water is approved by the Department prior to use.

Page 23 of 28 Brillion Wastewater Treatment Facility

The dilution water used in WET tests conducted on Outfall 001 shall be a grab sample collected from the receiving water location, upstream and out of the influence of the mixing zone and any other known discharge. The specific receiving water location must be specified in the WPDES permit.

• Shown below is a tabulation of all available WET data for Outfall 001. Efforts are made to ensure that decisions about WET monitoring and limits are made based on representative data, as specified in s. NR 106.08(3), Wis. Adm Code. Data which is not believed to be representative of the discharge was not included in reasonable potential calculations. The table below differentiates between tests used and not used when making WET determinations. Significant changes were made to WET test methods in 2004 and these changes were assumed to be fully implemented by certified labs by no later than June 2005. Data collected prior to July 1, 2005, is excluded in this evaluation.

Date		Acute LCs	Results			Ch	ronic Resu IC ₂₅ %	ılts		Footnotes
Test Initiated	C. dubia	Fathead minnow	Pass or Fail?	Used in RP?	C. dubia	Fathead Minnow	Algae (IC ₅₀)	Pass or Fail?	Use in RP?	or Comments
01/25/2007	>100	>100	Pass	Yes	>100	>100		Pass	Yes	
07/17/2008	>100	>100	Pass	No	>100	>100		Pass	No	1
08/28/2012	>100	>100	Pass	Yes	>100	86.3		Fail	Yes	
10/23/2012					45.8	>100		Fail	Yes	
11/06/2012					>100	>100		Pass	Yes	
02/11/2014	>100	>100	Pass	Yes	88.8	>100		Fail	Yes	
04/08/2014					31.1	>100		Fail	Yes	
06/10/2014					>100	>100		Pass	Yes	
05/07/2019	>100	>100	Pass	Yes	>100	>100		Pass	Yes	
07/20/2021	>100	>100	Pass	Yes	>100	>100		Pass	Yes	
09/26/2023	>100	>100	Pass	Yes	>100	>100		Pass	Yes	

WET Data	History
----------	---------

Footnotes:

1. *Tests done by S-F Analytical, July 2008 – March 2011*. The DNR has reason to believe that WET tests completed by SF Analytical Labs from July 2008 through March 31, 2011 were not performed using proper test methods. Therefore, WET data from this lab during this period has been disqualified and was not included in the analysis.

• According to s. NR 106.08, Wis. Adm. Code, WET reasonable potential is determined by multiplying the highest toxicity value that has been measured in the effluent by a safety factor, to predict the likelihood (95% probability) of toxicity occurring in the effluent above the applicable WET limit. The safety factor used in the equation changes based on the number of toxicity detects in the dataset. The fewer detects present, the higher the safety factor, because there is more uncertainty surrounding the predicted value. WET limits must be given, according to s. NR 106.08(6), Wis. Adm. Code, whenever the applicable Reasonable Potential equation results in a value greater than 1.0.

Acute Reasonable Potential = [(TUa effluent) (B)(AMZ)] Chronic Reasonable Potential = [(TUc effluent) (B)(IWC)]

According to s. NR 106.08(6)(d), Wis. Adm. Code, TUa and TUc effluent values are equal to zero whenever toxicity is not detected (i.e. when the LC_{50} , IC_{25} or $IC_{50} \ge 100\%$).

Acute Reasonable Potential = 0 < 1.0, reasonable potential is not shown, and a limit is not required.

Attachment #1 Chronic Reasonable Potential = $[(TU_c \text{ effluent}) (B)(IWC)]$

TUc (maximum) 100/IC ₂₅	B (multiplication factor from s. NR 106.08(6)(c), Wis. Adm. Code, Table 4)	IWC				
100/31.1 = 3.2	2.6 Based on 4 detects	99%				

Chronic WET Limit Parameters

[(TUc effluent) (B)(IWC)] = 8.3 > 1.0

Therefore, reasonable potential is shown for chronic WET limits using the procedures in s. NR 106.08(6) and representative data from 01/25/2007 - 09/26/2023.

<u>Expression of WET limits</u> Chronic WET limit = [100/IWC] TU_c = 1.0 TU_c expressed as a monthly average

The WET checklist was developed to help DNR staff make recommendations regarding WET limits, monitoring, and other related permit conditions. The checklist indicates whether acute and chronic WET limits are needed, based on requirements specified in s. NR 106.08, Wis. Adm. Code. The checklist steps the user through a series of questions, assesses points based on the potential for effluent toxicity, and suggests monitoring frequencies based on points accumulated during the checklist analysis. As toxicity potential increases, more points accumulate, and more monitoring is recommended to ensure that toxicity is not occurring. A summary of the WET checklist analysis completed for this permittee is shown in the table below. Staff recommendations based on best professional judgment are provided below the summary table. For guidance related to reasonable potential and the WET checklist, see Chapter 1.3 of the WET Guidance Document: https://dnr.wisconsin.gov/topic/Wastewater/WET.html.

	Acute	Chronic
	Not Applicable.	IWC = 99%.
AMZ/IWC		
	0 Points	15 Points
	6 tests used to calculate RP.	10 tests used to calculate RP.
Historical	No tests failed.	4 tests failed.
Data		
	0 Points	0 Points
	Little variability, no violations or upsets,	Same as Acute.
Effluent	consistent WWTF operations.	
Variability		
	0 Points	0 Points
Dessiving Water	Warmwater sport fish.	Same as Acute.
Classification		
Classification	5 Points	5 Points
	Reasonable potential for limits for chloride based	Reasonable potential for limits for chloride based
	on ATC; Ammonia, copper, nickel, and zinc	on CTC; Ammonia, copper, nickel, and zinc
Chemical-Specific	detected. Additional Compounds of Concern:	detected. Additional Compounds of Concern:
Data	None.	None.
	8 Points	8 Points

WET Checklist Summary

Page 25 of 28 Brillion Wastewater Treatment Facility

Attachment #1					
	Acute	Chronic			
Additives	1 Water Quality Conditioner (ferric chloride) added. Permittee has proper P chemical SOPs in place.	All additives used more than once per 4 days.			
	1 Point	1 Point			
Discharge	2 Industrial Contributors.	Same as Acute.			
Category	6 Points	6 Points			
Wastewater	Secondary or Better	Same as Acute.			
Treatment	0 Points	0 Points			
Downstream	No impacts known.	Same as Acute.			
Impacts	0 Points	0 Points			
Total Checklist Points:	20 Points	35 Points			
Recommended Monitoring Frequency (from Checklist):	2 tests during permit term	Quarterly			
Limit Required?	No	$Limit = 1.0 TU_c$			
TRE Recommended? (from Checklist)	No	No			

Quarterly chronic testing and a TRE is recommended by the checklist based on the past failures. ٠ However, there have been several chronic tests that did not have toxicity detects so a TRE and quarterly testing is not recommended at this time.

- After consideration of the guidance provided in the Department's WET Program Guidance Document • (2022) and other information described above, 2/permit term acute and annual chronic WET tests are recommended in the reissued permit. Tests should be done in rotating quarters to collect seasonal information about this discharge. WET testing should continue after the permit expiration date (until the permit is reissued).
- According to the requirements specified in s. NR 106.08, Wis. Adm. Code, a chronic WET limit is • required. The chronic WET limit shall be expressed as 1.0 TUc as a monthly average in the effluent limits table of the permit.
- A minimum of annual chronic monitoring is required because a chronic WET limit is required. Federal • regulations in 40 CFR Part 122.44(i) require that monitoring occur at least once per year when a limit is present.

Page 27 of 28 Brillion Wastewater Treatment Facility

Facility Specific Chloride Variance Data Sheet

Directions: Please complete this form electronically. Record information in the space provided. Select checkboxes by double clicking on them. Do not delete or alter any fields. For citations, include page number and section if applicable. Please ensure that all data requested are included and as complete as possible. Attach additional sheets if needed.						
Section I: Ge	neral Information					
A. Name of Permitte	ee: City of Brillion					
B. Facility Name:	Brillion Wastewater Trea	tment Facility				
C. Submitted by:	Wisconsin Department of	f Natural Resources				
D. State: Wiscon	sin Substance:	Chloride	Date completed: February 17, 2025			
E. Permit #: WI	-0020443-10-0	WOSTS #:	(EPA USE ONLY)			
F. Duration of Vari	ance Start Date:	July 1, 2025	End Date: June 30, 2030			
G. Date of Variance	Application: December	8 2022				
H. Is this permit a:	First time subm	uittal for variance				
ni is this permit u.	Renewal of a p	revious submittal for	variance (Complete Section IX)			
I. Description of pr	onosed variance:					
The City of Brillic Creek in Calumet WWTF.	on Wastewater Treatment F. County. The City of Brillio	acility (WWTF) discha n seeks a variance to th	arges to an unnamed tributary to Spring he water quality standards for chloride for its			
The Department c Administrative Cc City of Brillion to adverse social and feasible pollutant based effluent lim variance to the chl	The Department concludes that the City of Brillion has met the requirements of s. NR 106.83(2), Wisconsin Administrative Code, and s. 283.15, Wisconsin Statutes. The Department further concludes that requiring the City of Brillion to meet the water quality standard for chloride would result in substantial and widespread adverse social and economic impacts in its service area. Furthermore, the Department concludes that there is no feasible pollutant control technology that can be applied to achieve compliance with the chloride water quality-based effluent limit (WQBEL). The Department therefore proposes that this permit include a discharger-specific variance to the chloride water quality standard for aquatic life.					
The proposed variance for chloride is from the WQBELs of 400 mg/L as a weekly average and 780 mg/L as a daily maximum, to interim limits of 780 mg/L expressed as a weekly average limit and 1,050 mg/L expressed as a daily maximum limit. The Department concludes that the interim limit reflects the greatest pollutant reduction achievable by the permittee with the pollutant control technologies currently applied in the permittee's WWTF. The permit requires the permittee to implement Source Reduction Measures (SRMs). The Department considers the highest attainable condition (HAC) of the receiving water to be the interim limit – applied for the term of the variance – combined with the permittee's implementation of SRMs. The term of the proposed variance is five years, concurrent with the term of the proposed WPDES permit. The underlying designated uses and criteria of Wisconsin's chloride water quality standards (WQS) will be retained, and all other applicable WQS will remain in effect with adoption of the proposed variance.						
This is a renewal of a previous submittal to EPA for a chloride variance for this permittee. The previous permit for this facility contained an interim chloride limit, target value and requirements to implement source reduction measures, in accordance with s. NR 106.83(2), Wis. Adm. Code.						
Citation: An interim chloride effluent limitation under s. NR 106.83(2), Wis. Adm. Code represents a variance to water quality standards authorized by s. 283.15, Wis. Stats., and 40 CFR §131.14.						
J. List of all who as	sisted in the compilation of	f data for this form				
Name	Email	Phone	Contribution			
Sarah Donoughe	Sarah.Donoughe@Wiscons	in.gov 920-366-60	076 Permit Drafter			
Trevor Moen	Trevor.Moen@Wisconsin.g	ov 920-410-51	92 Compliance Engineer			
Nicole Krueger	Nicole.Krueger@Wisconsin	n.gov 414-897-57	750 Parts II D-H and J			
Section II: Cr	Section II: Criteria and Variance Information					

А.	Water Quality Standard from which variance is sought: Chloride (395 mg/L aquatic life chronic toxicity criterion)					
B .	List other criteria likely to be affected by variance: None					
<u>с.</u>	Source of Substance: Regeneration wastewater from two municipal ion exchange softening plants (the Well #1 and #2 Plant plus the Well #3 Plant), regeneration wastewater from approximately 66 point-of-use water softeners, ferric chloride at wastewater treatment plant (for phosphorus removal), domestic sewage, a barrel zinc plating line at Professional Plating Inc., as well as snow melt and wash water from snowplow vehicles inside a shop					
D.	Ambient Substance Concentration: 31.1 mg/L Measured Estimated					
E.	If measured or estimated, what was the basis? Include citation. Background chloride data from the Manitowoc River measured at County Highway JJ is used in this evaluation because it is assumed to have similar characteristics as the unnamed tributary to Spring Creek.					
F.	Average effluent discharge rate: 0.824 MGDMaximum effluent discharge rate: 2.5 MGD(design flow)(design flow)					
G.	Effluent Substance Concentration: 1-day P99 = 1070 mg/L Measured Estimated 4-day P99 = 782 mg/L Default Unknown Average = 553 mg/L Verage Unknown					
Н.	If measured or estimated, what was the basis? Include Citation. Permit-required monitoring from 07/01/2018 – 08/14/2024.					
I.	Type of HAC: Type 1: HAC reflects waterbody/receiving water conditions Type 2: HAC reflects achievable effluent conditions Type 3: HAC reflects current effluent conditions					
J.	Statement of HAC: The Department has determined the highest attainable condition of the receiving water is achieved through the application of the variance limit in the permit, combined with a permit requirement that the permittee implement its Chloride SRM plan. Thus, the HAC at commencement of this variance is 780 mg/L as a weekly average and 1,050 mg/L as a daily maximum, which reflect the greatest chloride reduction achievable with the current treatment processes, in conjunction with the implementation of the permittee's Chloride SRM plan. The current effluent condition is reflective of on-site optimization measures that have already occurred. This HAC determination is based on the economic feasibility of available compliance options for the City of Brillion WWTF at this time (see Economic Section below). The permittee may seek to renew this variance in the subsequent reissuance of this permit; the Department will reevaluate the HAC in its review of					
К.	Variance Limit: Daily maximum = 1050 mg/L, weekly average = 780 mg/L					
L.	Level currently achievable (LCA): 1050 mg/L as a daily maximum and 780 as a weekly average					
М.	What data were used to calculate the LCA, and how was the LCA derived? (Immediate compliance with					
Dat	LCA is required.) Data collected from the current permit term $07/01/2018 - 08/14/2024$.					
N.	N. Explain the basis used to determine the variance limit (which must be \leq LCA). Include citation.					
	Daily maximum variance limit is less than the 1-day P99 of 1070 mg/L from the current permit term. This is because 1050 mg/L was not exceeded since 2019 so 1050 mg/L is more representative of levels currently achievable.					
	Weekly average variance limit = 4 Day P99. The limit is established in accordance with s. 283.15 (5), Wis. Stats. and ch. NR 106 Subchapter II, Wis. Adm. Code.					

Chapter NR 106, Subchapter VII, Wis. Adm. Code, allows for a variance; the imposition of a less restrictive interim limit; a compliance schedule that stresses source reduction and public education; and allowance for a target value or limit to be a goal for reduction.

O. Select all factors applicable as the basis for the variance provided 1 2 3 4 5 6 under 40 CFR 131.10(g). Summarize justification below:

Use of reverse osmosis treatment at the WWTF was evaluated. That treatment was estimated to result in an average cost that would be about 9.00% of the MHI. Replacing the current municipal ion-exchange water softening system with a lime softening system was also evaluated, and the estimated cost of doing so would be about 10.87% of the MHI. Those cost estimates are in the range in which the application of either treatment would be expected to result in substantial and widespread economic and social impacts to the community.

Sect	Section III: Location Information						
A. (A. Counties in which water quality is potentially impacted: Calumet; Manitowoc						
B. F	Receiving waterbody at discharg	e point: Unnamed tributary	to Spring Creek				
C. F	Flows into which stream/river?	Spring Creek, North Branch	How many miles	<1 mile to			
		Manitowoc River,	downstream?	Spring			
		Manitowoc River		Creek, 2			
				miles to			
				North			
			_	Branch			
D. (Coordinates of discharge point (UTM or Lat/Long): 44° 9' :	53" N Latitude, 88° 4' 49" V	W Longitude			
E. V	What is the distance from the po	int of discharge to the point d	lownstream where the con	centration of the			
S	ubstance falls to less than or equ	ual to the chronic criterion of	the substance for aquatic	life protection?			
A	Approximately 15 miles downstrea	am, where the 7Q10 of the Man	itowoc River is 3 cfs.	-			
F. P	Provide the equation used to cal	culate that distance (Include d	efinitions of all variables, i	dentify the values			
и	used for the clarification, and inclu	ude citation):					
Mass	balance equation solving for the o	cumulative stream flow needed	to result in an instream con	centration less than			
or equ	ual to the acute toxicity criteria of	757 mg/L and the chronic toxic	city criteria of 395 mg/L.				
(inter	im limit in mg/L x effluent design	flow in cfs) + (background con	ncentration in mg/L x backg	ground stream flow			
in cfs)) / (effluent design flow in cfs $+$]	background stream flow in cfs)	= < 395 mg/L.				
Desig	n flows from Brillion, Potter, Hill	bert, and Rockland SD 1 are use	ed in the equation above.				
To de	etermine when the receiving water	meets the acute toxicity criteria	a of 757 mg/L, actual 1-day	P99 effluent data			
from	Potter, Hilbert, and Rockland SD	1 and the proposed daily maxim	num interim limit for Brillio	on is used.			
		·					
To de	etermine when the receiving water	meets the chronic toxicity crite	eria of 395 mg/L, interim w	eekly average			
limits	for Brillion and Potter are used, t	he WQBEL of 400 mg/L for Re	ockland SD 1 and the actua	l 4-day P99 data			
from	from Hilbert is used since this facility does not have chloride limits.						

In order for the receiving water to meet both criterion, the receiving water flow needs to be at least 1.3 cfs. This happens at the Manitowoc River at Rockland.

G. What are the designated uses associated with the direct receiving waterbody, and the designated uses for any downstream waterbodies until the water quality standard is met?
 The receiving water and downstream waters are designated for recreation, non-public water supply, and fish and aquatic life uses (warmwater sport fish classification).

H. Identify all other variance permittees for the same substance which discharge to the same stream, river, or waterbody in a location where the effects of the combined variances would have an additive effect on

the waterbody: The flow-weighted effluent chloride concentration based on all of these facilities, including Brillion WWTF, using the current annual average design flow (total flow of 3.47 MGD) is 405 mg/L.

Permit Number	Facility Name		Facility Location	Variance Limit [mg/L]	
WI-0022195	St. Nazianz		St. Nazianz	Current = 490 mg/L	
	(design flow $= 0.20 \text{ MC}$	GD)			
WI-0022799	Chilton		Chilton	Current = $670 \text{ mg/L};$	
NH 0020002	(design flow = 1.189 M)	(GD)		Proposed = 560 mg/L	
WI-0020893	New Holstein		New Holstein	Current = 420 mg/L	
WI 0020025	$\frac{\text{(design flow} = 1.33 \text{ MC}}{\text{Potter}}$	3D)	Pottor	Current $= 450 \text{ mg/I}$:	
W1-0029023	(design flow - 0.0434)	MGD)	rotter	Proposed = 450 mg/L,	
I. Please attach a	man photographs or $\frac{1}{2}$	a simnl	e schematic showing the location o	f the discharge point as	
well as all varia	ances for the substance	current	tly draining to this waterbody on a	separate sheet	
See attached ma	ap "Current Outfall Varia	nces Se	ptember 2024"	1	
J. Is the receiving	g waterbody on the CW	A 303(d	l) list? If yes, please list 🛛 🗌 Yes	No Unknown	
the impairmen	ts below.				
The receiving w	vater is not on the 303(d)	list (Im	paired Waters List), but the North B	ranch of the Manitowoc	
River and the N	lanitowoc River (downst	ream) a	of sodiment and phosphorus. The M	habitat and low dissolved	
listed as impair	ed for contaminated sedi	nent and	d fish tissue caused by PCBs	annowed River is also	
instea as impaire	sa for containinated seam	nent un	a fish dissue caused by 1 CDS.		
<i>K.</i> Please list any	contributors to the POT	FW in t	he following categories:		
May need to co	ntact facility for this info	prmatio	n		
Food processors	(cheese, vegetables,	None			
meat, pickles, so	y sauce, etc.)				
Metal Plating/Metal Plating/Meta	etal Finishing	Profes	sional Plating Inc; Ariens Company		
Car Washes Best C		Car Wash			
Municipal Maint	enance Sheds (salt	City of	f Brillion DPW		
storage, truck wa	ashing, etc.)				
Laundromats		Wasco	omat Wash Center (does not soften v	vater)	
Other presumed	commercial or	Cobbl	estone Creek Dining & Banquet (has	s its own softener)	
industrial chlorid	e contributors to the				
POTW					
L. If the POTW d	loes not have a DNR-ap	proved	pretreatment program, is a sewer	use ordinance enacted to	
address the ch	loride contributions from	m the i	ndustrial and commercial users? I	f so, please describe.	
The City's ordi	nance requires sampling	and test	ing for wastewaters from industrial a	and commercial users on an	
as-needed basis	. However, a chloride pre	etreatme	ent limit is not in effect. The City has	s determined currently that	
	Jwn significant nitustria	sources	s of emonde discharges to the City's	saintary sewer.	
Section IV: P	retreatment (complet	e this se	ction only for POTWs with DNR-A	pproved Pretreatment	
Programs. See w:\V	ariances\Templates and (Guidanc	e\Pretreatment Programs.docx)	pprovod i rodoutiloni	
A. Are there any	industrial users contrib	uting cl	nloride to the POTW? If so, please	list.	
N/A					
B. Are all industr	ial users in compliance	with lo	cal pretreatment limits for chlorid	e? If not, please include a	
list of industrial users that are not complying with local limits and include any relevant correspondence between the POTW and the industry (NOVs, industrial SDM undates and timeframe, etc)					
N/A					
C. When were loc	al pretreatment limits f	or chlo	ride last calculated?		
N/A	-				

D.	Please provide information on specific SRM activities that will be implemented during the permit term to reduce the industry's discharge of the variance pollutant to the POTW N/A				
Se	ction V: Public Notice				
А.	Has a public notice been given for	or this proposed variance?	Yes No		
B.	If yes, was a public hearing held	as well?	⊠ Yes ∟ No ∟N/A		
C.	what type of notice was given: \square Notice of variance included i	n natica far narmit 🗌 Sanarata nati	as of variance		
п	Date of public notice: February	$\sim 27, 2025$ Date of hearing	g. April 14 2025		
E.	Were comments received from t	he public in regards to this notice or	$\frac{1}{\sqrt{2}} \frac{1}{\sqrt{2}} \frac{1}{\sqrt{2}$		
	hearing? (If yes, see notice of fina	<i>l</i> determination)			
Se	ction VI: Human Health	·			
A.	Is the receiving water designated	l as a Public Water Supply?	Yes No		
В.	Applicable criteria affected by va	ariance: No human health criteria fo	or chloride		
C.	C. Identify any expected impacts that the variance may have upon human health, and include any citations: None				
Se	ction VII: Aquatic Life and	l Environmental Impact			
А.	. Aquatic life use designation of receiving water: Warmwater sport fish classification				
В.	Applicable criteria affected by v	ariance: Aquatic life acute and	chronic toxicity criterion for chloride		
		are 757 mg/L and 395 Wisconsin water regar	mg/L from NR 105, applicable to all		
		wisconsin water regar	diess of classification.		
	 citations: The proposed interim limits exceed the genus mean chronic values for <i>Ceriodaphnia</i> (417 mg/L), <i>Daphnia</i> (639 mg/L), <i>Physa</i> (663 mg/L), <i>Lirceus</i> (770 mg/L), <i>Cricotopus</i> (991 mg/L), and <i>Hydroptila</i> (1055 mg/L). List any Endangered or Threatened species known or likely to occur within the affected area, and include our situations. None that would affect the metre available arithmics as the changing for changing for				
	more stringent than all genus mean chronic values for organisms with chloride toxicity data. As a result, no endangered species with data would need more protection than already provided by the existing criterion.				
	County Spacing Status				
	County	Species	Durus		
C (h	itation: U.S. Fish & Wildlife Servic http://www.fws.gov/endangered/) an	ce – Environmental Conservation Onlin d National Heritage Index (<u>http://dnr.v</u>	ne System vi.gov/topic/nhi/)		
Se	ction VIII: Economic Impac	ct and Feasibility			
A .	. Describe the permittee's current pollutant control technology in the treatment process: Treatment processes include preliminary and primary treatment using fine screens and clarifiers; secondary treatment using activated sludge technology; phosphorus removal; tertiary treatment using sand filters; sludge stabilization using aerobic digestion; and sludge thickening/drying using reed beds. None of these wastewater treatment processes remove chloride.				
В.	What modifications would be ne Upgrades to the WWTF would inc mg/L. Alternatively, changing the would be expected to result in the	cessary to comply with the current li clude installing reverse osmosis (RO) to municipal softening system from ion-e WWTF's compliance with the chloride	imits? Include any citations. comply with the WQBEL of 395 exchange to lime softening treatment e WQBEL.		
С.	How long would it take to imple	ment these changes?			

It would not be economically feasible for the City of Brillion to install reverse osmosis treatment at the WWTF, or to change the municipal softening system from ion-exchange to a lime softening system. Affordability is the limiting factor for both of these treatments, and it is unknown how long that will continue to be the case.

D.	Estimate the capital cost (<i>Citation</i>): R	O Treatment: \$796,500 (source: WDNR Form 3400-193 Chloride	
	V	ariance Application from permittee, with adjusted design flow rate	
	aj	pplied by DNR)	
	L	ime Softening: \$15,333,339 (source: Chloride Variance Economic	
Б		ligibility Tool (Lime Softening)	
E.	Estimate additional O & M cost (Citatio	<i>n</i>): RU Treatment: \$258,420 (source: WDNR Form 3400-193	
		design flow rote emplied by DNP)	
		Lime Softening: Cost estimate not available	
F	Estimate the impact of treatment on the effluent substance concentration, and include any citations:		
1.	Reverse osmosis wastewater treatment sys	stems can be operated to achieve levels of chloride below the water	
	quality standard of 395 mg/L. Municipal 1	ime softening systems do not generate chloride waste as do ion-	
	exchange softening systems, thus the conc	entration of chloride in the WWTF's discharge would be expected to	
	be at levels below the water quality standa	rd with a municipal lime softening system. However, neither of these	
	technologies is economically feasible for t	he City of Brillion at this time.	
~			
G.	Identify any expected environmental im	pacts that would result from further treatment, and include any	
	End of nine RO wastewater treatment tech	anology for chloride produces concentrated brine that can be as much	
	End-of-pipe RO wastewater treatment technology for chloride produces concentrated brine that can be as much or more of an environmental liability than the untreated effluent. Since the concentrated brine cannot be further		
	treated, the only recourse for the disposal	of the brine is transfer to another community, which is often not	
	feasible. Appropriate chloride source redu	ction activities are preferable environmentally to effluent end-of-pipe	
	treatment in most cases, since the end product of treatment (production of a concentrated brine) does not		
	remove the load of chloride from the envir	ronment.	
	There would be some impacts based on dispessel of bring from DO. These include oir pollution impacts from		
	trucking brine and increased chloride impacts at the point where brine is discharged.		
	Lime softening results in the generation of a sludge that would need to be disposed of, and there would be air		
	ponution impacts from the transport of tha	t material.	
H.	Is it technically and economically feasib	le for this permittee to modify 🛛 Yes 🖾 No 🗍 Unknown	
	the treatment process to reduce the leve	l of the substance in the	
	discharge?		
	Reverse Osmosis treatment of the City of	Brillion WWTF effluent to meet the WQBEL is technically feasible.	
	However, it is not economically feasible.	See DNR variance application and screening tool for costs of reverse	
	osmosis. Use of reverse osmosis at the W	WIF was evaluated; the resulting total cost for sewer user rates was	
	estimated to result in an average cost to no	despressed adverse social and economic impacts in the area where the	
	magnitude would cause substantial and widespread adverse social and economic impacts in the area where the discharge is located		
	discharge is located.		
	Lime softening treatment of the City of Br	illion's water supply – in lieu of ion-exchange (as currently practiced)	
	– is technically feasible, and would enable	the WWTF effluent to meet the chloride WQBEL. However, lime	
	softening is not economically feasible. See	the Chloride Variance Economic Eligibility Tool (Lime Softening)	
	screening tool for costs of lime softening.	Use of municipal lime softening was evaluated; the resulting cost for	
	increase of this magnitude would cause su	all average cost to households that would be 10.87% of the MHI. All	
	area where the discharge is located	ostantiar and widespread adverse social and economic impacts in the	
	and where the discharge is foculed.		
I.	If treatment is possible, is it possible to	comply with the limits on the 🛛 Yes 🗌 No 🗍 Unknown	
	substance?		

J. If yes, what prevents this from being done? Include any citations.

The cost of adding RO to the existing WWTF's treatment train, or replacing the current municipal ion-exchange water softening system with a lime softening system, would cause substantial and widespread adverse social and economic impacts in the area where the discharge is located. Implementation of the SRMs in the proposed permit is preferable economically and environmentally to installing either of these treatments.

K. List any alternatives to current practices that have been considered, and why they have been rejected as a course of action, including any citations:

Alternative water supply sources were considered since water softening was determined to be a primary source of chloride. The City of Manitowoc draws its water from the relatively 'softer' Lake Michigan; however, it is approximately 23 miles from Brillion to Manitowoc. In projects in which one municipality has supplied water to another, the Department has witnessed costs in the range of \$1 million per mile to install the pipeline between the two municipalities. Capital costs in that range exceed those estimated for the addition of RO treatment at the WWTF, thus this option would not be considered to be economically feasible.

The Department has also considered other wastewater treatment options, including hauling or piping wastewater to another POTW. In this situation piping wastewater to another POTW was considered to the City of Manitowoc, approximately 23 miles away. The cost of installing a wastewater pipeline over that distance would be comparable to that identified above for a water pipeline – and that cost would be prohibitive. Hauling wastewater from the City of Brillion to another POTW for treatment – approximately 700,000 gal/day – was deemed to be practicably unfeasible.

Citations: Justification for Variances to Water Quality Standards for Chloride in Wisconsin (07/09/2010 DRAFT)

Section IX: Compliance with Water Quality Standards

A. Describe all activities that have been, and are being, conducted to reduce the discharge of the substance into the receiving stream. This may include existing treatments and controls, consumer education, promising centralized or remote treatment technologies, planned research, etc. Include any citations.

As part of implementing the chloride source reduction measures (SRMs) as required per s. NR 106.83(2), Wis. Adm. Code, the permittee conducted the following activities:

A. SRMs Targeting Municipal Water Softening

- 1. Optimized the operation of the municipal ion-exchange softeners.
- 2. Evaluated the economic feasibility for re-use of the brine wastewater from the municipal softeners and develop plans to implement re-use options identified to be economically feasible.
- 3. Encouraged water conservation measures.

B. SRMs Targeting Point-of-Use Water Softening Sources

1. Educated point-of-use softener owners of the availability of municipally softened water and the impact of chloride on water quality; provide information about increasing softener efficiency and reducing the use of softened water.

2. Developed an inventory of point-of-use water softeners in use in the City, and collected information about the type of regeneration control unit and when each was last tuned-up.

3. Evaluated the need for a requirement – through an ordinance or other means – for periodic tuneups of point-of-use softeners.

C. SRMs Targeting Industrial, Commercial and Municipal Sources

- 1. Worked with industrial and commercial contributors to prevent increases in the amount of chloride discharged and sought reductions from those sources.
- 2. Evaluated the feasibility of switching to a non-chloride containing chemical, or using biological processes, for phosphorus removal at the wastewater treatment facility.
- 3. Evaluated the need to adopt an amendment to the sewer use ordinance that limits the discharge of chloride from industrial sources.

4. Developed and implement management practices to reduce/eliminate the discharge of chloride to the sanitary sewer system at municipal/county facilities housing vehicles used for snow plowing and road de-icing/anti-icing.

See the submitted Annual Chloride Progress Reports for further details.

B. Describe all actions that the permit requires the permittee to complete during the variance period to ensure reasonable progress towards attainment of the water quality standard. Include any citations.

1. SRMs Targeting Municipal Water Softening

- a. Continue to optimize the operation of the municipal ion-exchange softeners as a short-term solution.
- b. Continue to encourage water conservation.
- c. Complete a Water System Study to evaluate water supply and treatment alternatives that would best serve the City in the long-term on a cost-effective basis.

2. SRMs Targeting Point-of-Use Water Softeners

- a. Educate point-of-use softener owners of the availability of municipally softened water and the impact of chlorides on water quality; provide information about increasing softener efficiency and reducing the use of softened water.
- b. Continue to update the inventory of point-of-use water softeners in use in the City and collect information about the type of regeneration control unit and when each was last tuned-up.

3. SRMs Targeting Industrial, Commercial and Municipal Sources

- a. Continue to work with industrial and commercial contributors to prevent increases in the amount of chlorides discharged, and seek reductions from those sources.
- b. Evaluate and implement road salt minimization strategies, document and maintain SaltWise certifications, and conduct public outreach to reduce chloride contributions from winter road deicing/anti-icing activities; document and discuss these actions in the Annual Reports.

Citation: Chloride Source Reduction Measures Plan, City of Brillion, dated December 29, 2022, revised February 14, 2025

Section X: Compliance with Previous Permit (Variance Reissuances Only)		
A. Date of previous submittal: May 21, 2018 Date of EPA Approval: June 25, 2018		
B. Previous Permit #: WI-0020443-09-0	Previous WQSTS #:(EPA USE ONLY)	
C. Effluent substance concentration: 1-day P99 = 1,	070 Variance Limit: 1,100 mg/L (weekly average)	
mg/L; 4-day P	99	
= 782 mg/L		
D. Target Value(s): 990 mg/L (weekly average)	Achieved? 🛛 🛛 Yes 🗌 No 🗌 Partial	
E. For renewals, list previous steps that were to be con	mpleted. Show whether these steps have been	
completed in compliance with the terms of the prev	vious variance permit. Attach additional sheets if	
necessary.		
Condition of Previous Variance	Compliance	
Annual Chloride Progress Report #1	🖂 Yes 🗌 No	
Annual Chloride Progress Report #2	🖾 Yes 🗌 No	
Annual Chloride Progress Report #3	🖾 Yes 🗌 No	
Annual Chloride Progress Report #4	🖂 Yes 🗌 No	
Final Chloride Report	🖂 Yes 🗌 No	
Annual Chloride Progress Report #6 (After permit	Yes No	
expiration)		
Annual Chloride Progress Report #7 (After permit	🖾 Yes 🗌 No	
expiration)		

Engineering Report

Source Reduction Measures Plan

WPDES Permit No. WI-0020443-09-0

Prepared for the

CITY OF BRILLION

CALUMET COUNTY, WISCONSIN

DECEMBER 29, 2022

REVISED FEBRUARY 14, 2025

McMAHON ASSOCIATES, INC. 1445 McMAHON DRIVE NEENAH, WI 54956 Mailing: PO BOX 1025 NEENAH, WI 54957-1025 PH 920.751.4200 MCMGRP.COM

Engineering Report

Source Reduction Measures Plan WPDES Permit No. WI-0020443-09-0

Prepared for the

CITY OF BRILLION CALUMET COUNTY, WISCONSIN

DECEMBER 29, 2022 **REVISED FEBRUARY 14, 2025** McM. No. B0004-09-22-00652

I. INTRODUCTION

Wastewater generated within the City of Brillion is treated at the City's Wastewater Treatment Facility (WWTF) and discharge to the Brillion Marsh, via Black Creek under Wisconsin Pollutant Discharge Elimination System (WPDES) Permit No. WI-0020443-09-0.

The current permit, effective July 1, 2018, includes an interim weekly average effluent chloride limitation of 1,100 mg/L. The unenforceable effluent chloride target concentration was 990 mg/L. As part of the chloride variance the City was required to develop and implement a Chloride Source Reduction Plan over the term of the current WPDES Permit.

The City was granted a variance for the chloride limitation in accordance with Wisconsin Administrative Code NR 106.83(2). Without the variance, the City would have been required to meet a weekly average effluent chloride concentration of 395 mg/L, based on water quality standards.

The following is a summary of chloride Source Reduction Measures (SRM's), included in the City's 2018-2023 chloride Source Reduction Plan:

A. <u>SRM's Targeting Municipal Water Softening</u>

- 1. Optimized the operation of the municipal ion-exchange softeners.
- 2. Evaluated the economic feasibility for re-use of the brine wastewater from the municipal softeners and developed plans to implement re-use options identified to be economically feasible.
- 3. Encouraged water conservation measures.

B. <u>SRM's Targeting Point-of-Use Water Softening Sources</u>

- 1. Educated point-of-use softener owners of the availability of municipal softeners and the impact of chloride on water quality; provide information about increasing softener efficiency and reducing the use of softened water.
- 2. Developed an inventory of point-of-use water softeners in use in the City and collected information about the type of regeneration control unit and when each was last tuned up.
- 3. Evaluated the need for a requirement through an ordinance or other means for periodic tune-ups of point-of-use softeners.

C. <u>SRM's Targeting Industrial, Commercial and Municipal Sources</u>

- 1. Worked with industrial and commercial contributors to prevent increases in the amount of chloride discharged and seek reductions from those sources.
- 2. Evaluated the feasibility of switching to a non-chloride containing chemical, or using biological processes, for phosphorus removal at the wastewater treatment facility.
- 3. Evaluated the need to adopt an amendment to the sewer use ordinance that limits the discharge of chlorides from industrial sources.
- 4. Developed and implemented management practices to reduce / eliminate the discharge of chloride to the sanitary sewer system at municipal / county facilities housing vehicles used for snow plowing and road de-icing / anti-icing.

Over the course of the current permit term, the City of Brillion has demonstrated success in reducing chloride below the target concentration of 990 mg/L, where the overall weekly average chloride concentration from January 2018 through November 2022 was 581 mg/L. The maximum weekly average chloride concentration over the Permit term was 1,103 mg/L in March 2019; however, the maximum weekly average over the past three (3) years was 788 mg/L.

The City intends to apply for a Chloride Variance with the upcoming application for WPDES Permit reissuance as the water quality based weekly average effluent chloride limit of 395 mg/L cannot be met under current conditions.

II. CHLORIDE SOURCE IDENTIFICATION

The City of Brillion softens all its water supply at two (2) ion-exchange softening facilities. The two (2) softening facilities use a brine (salt) solution to regenerate the ion exchange resins after their exchange capacity is exhausted. The water softener regeneration wastewater is discharged to the sanitary sewer system. The total annual average salt usage at the two (2) softening facilities from January 2018 through November 2022 is 2,687 lbs./day, corresponding to an estimated 1,649 lbs./day of chlorides discharged to the WWTF. The municipal softeners currently accounted for approximately 51% of the chlorides discharged at the WWTF. The municipal softener regeneration is the main contributor of chlorides to the WWTF.

Table #1 identifies the known chloride sources to the WWTF. The total average chloride loading to the WWTF in 2018 through 2022 was estimated at 3,256 lbs./day, based on the WWTF DMR data. Therefore, the identified estimated known chloride sources account for nearly 56% of the chlorides in the WWTF flow. It is assumed the majority of the unknown chloride sources are those that are typically found in the City's domestic and industrial wastewater or from sewer system infiltration and inflow containing road salt.

Chloride Source	Annual Average	Annual Percent
Category	Mass (lbs./day)	of Total (%)
Municipal Softening Facility	1,649	51
Residential/Commercial Softening	50	2
Car Wash Point of Use Softener	22	1
Ferric Chloride Addition at WWTF	109	3
Unknow Chloride Source (e.g., I/I road salt)	1,426	44
Total to WWTF	3,256	100

Table # 1 Known Chloride Loadings to the WWTF

III. DATA ANALYSIS

Figure #1 shows the weekly average effluent chloride concentration in the WWTF flow over the period between January 2018 to November 2022. Since the effective date of the permit term in 2018, the City of Brillion has exceeded the weekly average limitation of 1,100 mg/L only once, in March of 2019 at a weekly average concentration of 1,103 mg/L.

In 2020, the maximum weekly average chloride concentration was 729 mg/L which occurred in October. The spike in effluent chloride concentration in October of 2020 was likely a result of a failure to one of the softener shells at the Main Street facility, which resulted in additional regeneration cycles at the Main Street facility and increased operation of the less efficient Well #3 softening facility while the issue at Main Street was corrected.

In 2021, the maximum weekly average chloride concentration was 761 mg/L which occurred in May. In 2022, the maximum weekly average chloride concentration was 788 mg/L which occurred in March. This is likely attributed to operational issues with the softening equipment at the Main Street facility and the effects of spring thaw and infiltration into the sewer system carrying residual road salt along with it.

IV. PROPOSED SOURCE REDUCTION MEASURES

The following table lists the source reduction measure and the steps the City plans to undertake during the next WPDES permit term to reduce chloride discharges from the treatment plant.

Source Reduction Measure	Actions	Start	
		Target Completion/Frequency	
SRMs Targeting Municipal Water So	ftening		
Continue to optimize the operation of the municipal ion-exchange softeners as a short-term solution.	Ensure optimum operational factors – including regeneration interval, salt dosage and other factors are maintained to optimize municipal softening operation.	Start: Year 1 Frequency: Annual, ongoing	
	Continue to evaluate the current condition of the ion-exchange softeners, including the efficiency and life expectancy of resins.	Start: Year 1 Frequency: Annual, ongoing	
Continue to encourage water conservation	Continue to meet with commercial and industrial customers on a periodic basis to discuss water use, wastewater discharges, and evaluate their impact on City infrastructure.	Start: Year 1 Frequency: Annual, ongoing	
Complete a Water System Study to evaluate water supply and treatment alternatives that would best serve the City in the long-term on a cost-effective basis.	 Evaluate the following: Maintaining ion exchange softening but incorporating segregation, storage, and disposal of high chloride regeneration wastewater at another facility able to accept the waste stream. Replacing the municipal softeners with an alternative treatment technology. Alternative water sources/supplies. 	Start: Year 1 Target Completion: Year 4	
SRMs Targeting Point-of-Use Water Softeners			
Educate point-of-use softener owners of the availability of municipally softened water and the impact of chlorides on water quality; provide information about increasing softener efficiency and reducing the use of softened water.	Send information (e.g., brochures) to customers and post information on the City's web site.	Start: Year 1 Frequency: Annual, ongoing	

Continue to update the inventory of point-of-use water softeners in use in the City and collect information about the type of regeneration control unit and when each was last tuned-up.	Continue to update the inventory of point- of-use softeners.	Start: Year 1 Frequency: Annual, ongoing
SRMs Targeting Industrial, Commerce	cial and Municipal Sources	
Continue to work with industrial and commercial contributors to prevent increases in the amount of chlorides discharged, and seek reductions from those sources	Conduct annual meetings and inspections with each industrial and commercial contributor, during which sources of chloride discharged will be identified; potential means of reducing the amount of chloride discharged will be identified; and – where appropriate – plans will be developed to implement additional source reduction measures.	Start: Year 1 Frequency: Annual, ongoing
Evaluate and implement road salt minimization strategies, document and maintain staff SaltWise certifications, and conduct public outreach to reduce chloride contributions from winter road deicing/anti-icing activities. Document and discuss these actions in Annual Reports.	Continue to work with City Staff on minimizing discharges of chlorides associated with the housing of vehicles used for snow plowing and road de-icing / anti-icing, specifically, working to limit chloride discharge from the vehicles to the garage floor drains by removing residual salt and snow from the equipment prior to storage. Investigate ways to calibrate road salting equipment for more efficient salt application, evaluate costs and efficiencies of any alternatives identified, and discuss any follow-up actions taken for the preferred alternative(s). Evaluate updating/replacing snow plowing and road salting equipment and purchasing brine making equipment. Track annual road salt usage and discuss any trends observed in Annual Reports. Maintain staff certifications through Wisconsin SaltWise and encourage City Staff to attend annual SaltWise and APWA salt seminars.	Start: Year 1 Target Completion: Year 4

Document staff certifications through SaltWise. Report how many staff members are certified and their roles in road salting in Annual Reports.	
Conduct public outreach regarding safe salting practices by posting SaltWise information on the City's website, posting informational flyers at city/community centers, and/or sending out informational brochures with billing statements.	