Appendix D Final Cover Water Balance Calculations

COMPUTATION SHEET

;					SHEET	1	OF	3
744 Heartland Trail (53717-8923)	P. O. Box	8923 (53708-89	23) Madison,	WI (608) 83	31-4444 FA	X: (608) 831-3334	VOICE: ((608) 831-1989
PROJECT/PROPOSAL NAME	PREPARED			CHECKED		PROJECT/PRO	DPOSAL N	О.
Dairyland Power		By:	Date:	By:	Date:		3081.58	
		GMP	06/27/03	BIK	11/03			

HELP MODEL ANALYSIS

Purpose:

To determine the water budget for post-closure landfill conditions. This information will be used to determine the efficiency of the proposed cover for the DPC Phase IV Landfill compared to the standard NR 504 final cover and the final cover in DPC's Plan of Operation conditional approval.

Methodology:

A computer program was used to simulate the performance of the proposed cover. The Hydrologic Evaluation of Landfill Performance (HELP) Model is an analytical computer water balance program developed for the USEPA by the U.S. Army Engineer Waterways Experiment Station in Vicksburg, Mississippi (Schroeder et al., 1994). The program was developed to model the movement and quantity of water across, into, through, and out of various landfill liner and cover design configurations. The HELP model estimates these movements and quantities by interpreting the combined effects of precipitation, runoff, percolation, evapotranspiration, moisture storage, and lateral drainage. Landfill systems, including various combinations of vegetation, cover soil, waste layers, drainage layers, and relatively impermeable barrier soil layers, as well as geomembrane liners, may be modeled.

Default climatological data for La Crosse, Wisconsin, were used for the open conditions. The default data were used to synthetically generate 1 to 10 years of climatological data for the landfill.

For the purpose of determining the water balance, the model reported values in inches per unit area per year. The HELP model simulation was performed using an area of 1 acre. To determine the average annual volume, the unit rates are multiplied by the total landfill area in acres and converted to gallons per day.

Assumptions:

To set up and run the HELP model, several assumptions need to be made based on the existing site conditions and the proposed design. These assumptions were kept constant between runs to allow a true comparison between final cover designs. The assumptions that were used for modeling the landfill are as follows:

COMPUTATION SHEET

3

OF_ SHEET 2 744 Heartland Trail (53717-8923) P. O. Box 8923 (53708-8923) Madison, WI (608) 831-4444 FAX: (608) 831-3334 VOICE: (608) 831-1989

PROJECT/PROPOSAL NAME	PREPARED		CHECKED		PROJECT/PROPOSAL NO.
Dairyland Power	By:	Date:	By:	Date:	3081.58
-	GMP	06/27/03	BJK	11/03	

- The evaporation zone depth is 8 inches.
- The maximum leaf index is 3.5.
- The slope and drainage length for the liner are 25 percent and 140 feet.
- The percent of area from which runoff is possible is 100 percent.
- The runoff curve number used was 69, based on the surface water design calculations in the Plan of Operation.

Open Conditions:

The layers used to model the landfill are as follows:

Option A: NR 504.07 Cover

LAYER	THICKNESS (inches)	DESCRIPTION	LAYER TYPE	MATERIAL TEXTURE	USCS* SOIL CLASSIFICATION
1	6	Topsoil	Vertical percolation	9	ML
2	18	Rooting zone	Vertical percolation	22	ML
3	12	Drainage layer	Lateral drainage	5	SM
4	24	Clay barrier	Barrier soil	16	Liner soil

Note:

* Unified Soil Classification System.

Option B: Approved Plan of Operation Cover

LAYER	THICKNESS (inches)	DESCRIPTION	LAYER TYPE	MATERIAL TEXTURE	USCS* SOIL CLASSIFICATION
1	6	Topsoil	Vertical percolation	9	ML
2	18	Rooting zone	Vertical percolation	22	ML
3	12	Drainage layer	Lateral drainage	5	SM
4	.06	Geomembrane	Flexible membrane	35	
5	.24	GCL	Barrier soil	17	
6	12	Fine-grained soil	Vertical percolation	22	ML
7	12	Sand capillary break	Vertical percolation	5	SM

Note:

* Unified Soil Classification System.

COMPUTATION SHEET

3

SHEET

OF_ 3 744 Heartland Trail (53717-8923) P. O. Box 8923 (53708-8923) Madison, WI (608) 831-4444 FAX: (608) 831-3334 VOICE: (608) 831-1989

PROJECT/PROPOSAL NAME	PREPARED		CHECKED		PROJECT/PROPOSAL NO.
Dairyland Power	By:	Date:	By:	Date:	3081.58
	GMP	06/27/03	BJK	11/03	

Option C: Proposed Cover

LAYER	THICKNESS (inches)	DESCRIPTION	LAYER TYPE	MATERIAL TEXTURE	USCS* SOIL CLASSIFICATION
1	6	Topsoil	Vertical percolation	9	ML
2	18	Rooting zone	Vertical percolation	22	ML
3	12	Drainage layer	Lateral drainage	2	CL
4	.06	Geomembrane	Flexible membrane	35	
5	24	Ash barrier	Barrier soil	30	

Note:

* Unified Soil Classification System.

Results:

The results of the HELP model simulations are summarized in Table 1. The detailed outputs are attached.

References:

- Schroeder, P.R., T.S., Dozier, P.A., Zappi, B.M., McEnroe, J.W., Sjostrom, and R.L., Peyton. 1994a. The Hydrologic Evaluation of Landfill Performance (HELP) model: User's guide for Version 3. EPA/600/9-94/168a. U.S. Environmental Protection Agency Risk Reduction Engineering Laboratory, Cincinnati, Ohio.
- Schroeder, P.R., T.S., Dozier, P.A., Zappi, B.M., McEnroe, J.W., Sjostrom, and R.L., Peyton. 1994b. The Hydrologic Evaluation of Landfill Performance (HELP) model: Engineering documentation for Version 3. EPA/600/9-94/168a. U.S. Environmental Protection Agency Risk Reduction Engineering Laboratory, Cincinnati, Ohio.

Table D-1
Water Budget – Average Annual Totals (inches)
DPC Phase IV Landfill

SIMULATION NUMBER	COVER DESIGN	YEARS EVALUATED	PRECIPITATION	RUNOFF	EVAPO- TRANSPIRATION	FINAL COVER LATERAL DRAINAGE	LEAKAGE THROUGH FINAL COVER	MOISTURE STORAGE WITH COVER	COVER EFFICIENCY (percent)
1	NR 504.07	10	29.93	1.575	22.565	4.678	1.00288	0.104	96.6
2	Approved Plan of Operation	10	29.93	1.575	22.565	5.681	0.00015	0.082	99.9995
3	Proposed cover	10	29.93	1.575	22.565	5.678	0.00056	0.107	99.9981

** ** ** HYDROLOGIC EVALUATION OF LANDFILL PERFORMANCE ** ** HELP MODEL VERSION 3.03 (31 DECEMBER 1994) ** ** ** DEVELOPED BY ENVIRONMENTAL LABORATORY ** ** USAE WATERWAYS EXPERIMENT STATION ** FOR USEPA RISK REDUCTION ENGINEERING LABORATORY ** ** ** ** **

PRECIPITATION DATA FILE:C:\HELP\DATA4.D4TEMPERATURE DATA FILE:C:\HELP\DATA7.D7SOLAR RADIATION DATA FILE:C:\HELP\DATA13.D13EVAPOTRANSPIRATION DATA:C:\HELP\DATA11.D11SOIL AND DESIGN DATA FILE:C:\HELP\DATA10.D10OUTPUT DATA FILE:C:\HELP\OUT1.OUT

TIME: 9:27 DATE: 6/27/2003

TITLE: Dairyland Power NR 504

NOTE: INITIAL MOISTURE CONTENT OF THE LAYERS AND SNOW WATER WERE COMPUTED AS NEARLY STEADY-STATE VALUES BY THE PROGRAM.

LAYER 1

TYPE 1 - VERTICAL PERCOLATION LAYER MATERIAL TEXTURE NUMBER 9 6.00 INCHES 100 THICKNESS 0.5010 VOL/VOL -POROSITY 0.2840 VOL/VOL = FIELD CAPACITY 0.1350 VOL/VOL WILTING POINT - **F** 0.3074 VOL/VOL INITIAL SOIL WATER CONTENT = EFFECTIVE SAT. HYD. COND. = 0.190000006000E-03 CM/SEC NOTE: SATURATED HYDRAULIC CONDUCTIVITY IS MULTIPLIED BY 4.63 FOR ROOT CHANNELS IN TOP HALF OF EVAPORATIVE ZONE.

LAYER 2

TYPE 1 - VERTICAL PERCOLATION LAYER

TURE NUMBER 22
= 18,00 INCHES
= 0.4190 VOL/VOL
= 0.3070 VOL/VOL
= 0.1800 VOL/VOL
= 0.2917 VOL/VOL
= 0.189999992000E-04 CM/SEC
I

LAYER 3

TYPE 2 - LATERAL DRAINAGE LAYER MATERIAL TEXTURE NUMBER 5

LITT TITL TATA TANALA	C	A R R R R R R R R R R R R R R R R R R R	the second se	
THICKNESS	=		INCHES	
POROSITY	÷.	0.4570	VOL/VOL	
FIELD CAPACITY		0.1310	VOL/VOL	
WILTING POINT	=		VOL/VOL	
INITIAL SOIL WATER CONTENT	-		VOL/VOL	
EFFECTIVE SAT. HYD. COND.	-	0.10000000	5000E-02	CM/SEC
SLOPE	-	25.00	PERCENT	
DRAINAGE LENGTH	-	140.0	FEET	
DIGITINGOD TITLOTH				

LAYER 4

		SOIL LINER	
MATERIAL T	EXTURE	NUMBER 16	
THICKNESS	(=	24.00 INCHES	
POROSITY	=	0.4270 VOL/VOL	
FIELD CAPACITY	÷.	0.4180 VOL/VOL	
WILTING POINT		0.3670 VOL/VOL	
INITIAL SOIL WATER CONTE	NT =	0.4270 VOL/VOL	
EFFECTIVE SAT. HYD. COND	. =	0.10000001000E-06 CM/SEC	

GENERAL DESIGN AND EVAPORATIVE ZONE DATA

NOTE: SCS RUNOFF CURVE NUMBER WAS USER-SPECIFIED.

SCS RUNOFF CURVE NUMBER	=	69.00	
FRACTION OF AREA ALLOWING RUNOFF	-	100.0	PERCENT
AREA PROJECTED ON HORIZONTAL PLANE	=	1,000	ACRES
EVAPORATIVE ZONE DEPTH	=	8.0	INCHES
INITIAL WATER IN EVAPORATIVE ZONE	=	2.184	INCHES
UPPER LIMIT OF EVAPORATIVE STORAGE	=	3.844	INCHES

LOWER LIMIT OF EVAPORATIVE STORAGE	a 1	1.170	INCHES
INITIAL SNOW WATER	-	0.000	INCHES
INITIAL WATER IN LAYER MATERIALS	-	19.000	INCHES
TOTAL INITIAL WATER	-	19.000	INCHES
TOTAL SUBSURFACE INFLOW	÷.	0.00	INCHES/YEAR
TOTAL SUBSURFACE INFLOW			

EVAPOTRANSPIRATION AND WEATHER DATA

NOTE: EVAPOTRANSPIRATION DATA WAS OBTAINED FROM LACROSSE WISCONSIN

5	MAXIMUM LEA	F AREA IN	IDEX		=	3.50		
	START OF GR	OWING SEA	ASON (JUL)	IAN DATE)	=	130		
	END OF GROW	TNG SEAS	IALLUL) NO	J DATE)	=	275		
	AVERAGE ANN	HAT. WIND	SPEED		=	10.00	MPH	
2	AVERAGE ANI	OUARTER	RELATIVE	HUMIDITY	=	73.00	8	
5	AVERAGE 2ND	OUARTER	RELATIVE	HUMIDITY	=	68.00	8	
	AVERAGE 3RD	OUARTER	RELATIVE	HUMIDITY	=	74.00	8	
2	AVERAGE SKL	OUARTER	RELATIVE	HUMIDITY	=	76.00	00	
	AVERAGE 411	Quantitate		a state state of the state				

NOTE: PRECIPITATION DATA WAS SYNTHETICALLY GENERATED USING COEFFICIENTS FOR LACROSSE WISCONSIN

NORMAL MEAN MONTHLY PRECIPITATION (INCHES)

JAN/JUL	FEB/AUG	MAR/SEP	APR/OCT	MAY/NOV	JUN/DEC
DAMIOOD	1 227 1100				******
0.94 3.83	0.89 3.70	1.96 3.47	3.05 2.08	3.61 1.50	4.15 1.07

NOTE: TEMPERATURE DATA WAS SYNTHETICALLY GENERATED USING COEFFICIENTS FOR LACROSSE WISCONSIN

NORMAL MEAN MONTHLY TEMPERATURE (DEGREES FAHRENHEIT)

JAN/JUL	FEB/AUG	MAR/SEP	APR/OCT	MAY/NOV	JUN/DEC
URIVIUUL	3 22 4 67 6 2	and a second second	الاختلفيني		
14.00 73.00	19.70 70.90	30.90 61.60	47.20 50.40	59.40 35.30	68.50 21.50

NOTE: SOLAR RADIATION DATA WAS SYNTHETICALLY GENERATED USING COEFFICIENTS FOR LACROSSE WISCONSIN

STATION LATITUDE = 43.75 DEGREES

AVERAGE MONTHLY VALUES IN INCHES FOR YEARS 1 THROUGH 10

	JAN/JUL	FEB/AUG	MAR/SEP	APR/OCT	MAY/NOV	JUN/DEC
PRECIPITATION						
TOTALS	0.78 4.25	0.76 4.01	1.64 3.05	2.92 2.04	4.47 1.29	3.61 1.11
STD. DEVIATIONS	0.23 2.26	0.45 2.04	0.69 1.73	1.16 1.06	2.17 0.88	1.89 0.38
RUNOFF						
TOTALS	0.091 0.000	0.163 0.049	0.550	0.634 0.000	0.001 0.007	0.014 0.066
STD. DEVIATIONS	0.097	0.311 0.155	0.430 0.000	0,741 0.000	0.002 0.021	0.043 0.101
EVAPOTRANSPIRATION						
TOTALS	0.455 3,920	0.624 2.645	1.399 2.368	2.425 1.305	3.099 0.759	3.126 0.438
STD. DEVIATIONS	0.093	0.135 1.230	0.341 0.877	0.735 0.476	1.165 0.225	1.048 0.106
LATERAL DRAINAGE COL	LECTED FROM	LAYER 3				
TOTALS	0.1503 0.6050				0.4405 0.4849	
STD. DEVIATIONS	0.2156 0.5757					
PERCOLATION/LEAKAGE	THROUGH LAY	ER 4				
TOTALS	0.0613 0.1127					
STD. DEVIATIONS	0.0496 0.0117	0.0438	0.0353	0.0415	0.0221 0.0351	0.0087 0.0352
AVERAGE	S OF MONTHL			EADS (INC		
DAILY AVERAGE HEAD A	CDOCC LAVE		71001000			
				0.4268	1.4913	2.3193
AVERAGES	0.5065	2.259	2.1055	5 1.9131		
STD. DEVIATIONS	0 7294	0.2402	0.2073	0.8264	1.4916	2.0567

	INCH	IES		CU. FEET	PERCENT
PRECIPITATION	29.93	(3.273)	108627.8	100.00
RUNOFF	1.575	(0.9711)	5716.84	5.263
EVAPOTRANSPIRATION	22.565	(1.7313)	81909,50	75.404
LATERAL DRAINAGE COLLECTED FROM LAYER 3	4.67832	(2.38029)	16982.312	15.63349
PERCOLATION/LEAKAGE THROUGH LAYER 4	1.00288	(0.12671)	3640.464	3.35132
AVERAGE HEAD ACROSS TOP OF LAYER 4	1.338 (0.681)		
CHANGE IN WATER STORAGE	0.104	(0.9731)	378.64	0.349

PEAK DAILY VALUES FOR YEARS	1 THROUGH	10
	(INCHES)	(CU. FT.)
PRECIPITATION	3.09	11216.699
RUNOFF	1.056	3834.6309
DRAINAGE COLLECTED FROM LAYER 3	0.07585	275.3189
PERCOLATION/LEAKAGE THROUGH LAYER 4	0.004530	16.4428
AVERAGE HEAD ACROSS LAYER 4	7.960	
SNOW WATER	1.68	6098.3999
MAXIMUM VEG. SOIL WATER (VOL/VOL)	0	4696
MINIMUM VEG. SOIL WATER (VOL/VOL)	0.	0960

FINAL WATER STORAGE AT END OF YEAR 10

2 5.5664 0.3092 3 1.6358 0.1363 4 10.2480 0.4270 SNOW WATER 0.000	LAYER	(INCHES) 1.8192	(VOL/VOL) 0.3032
3 1.6358 0.1363 4 10.2480 0.4270 SNOW WATER 0.000	1		
4 10.2480 0.4270 SNOW WATER 0.000			
	and the second second		0.4270

A REAL PROFESSION AND A

* * ** ** ** HYDROLOGIC EVALUATION OF LANDFILL PERFORMANCE ** ** HELP MODEL VERSION 3.03 (31 DECEMBER 1994) * * ** * * DEVELOPED BY ENVIRONMENTAL LABORATORY ** ** USAE WATERWAYS EXPERIMENT STATION ** ** FOR USEPA RISK REDUCTION ENGINEERING LABORATORY 4.4 ** ** ** **

PRECIPITATION DATA FILE:C:\HELP\DATA4.D4TEMPERATURE DATA FILE:C:\HELP\DATA7.D7SOLAR RADIATION DATA FILE:C:\HELP\DATA13.D13EVAPOTRANSPIRATION DATA:C:\HELP\DATA11.D11SOIL AND DESIGN DATA FILE:C:\HELP\DATA8.D10OUTPUT DATA FILE:C:\HELP\OUT2.OUT

TIME: 9:33 DATE: 6/27/2003

TITLE: Dairyland Power DPC Approved

NOTE: INITIAL MOISTURE CONTENT OF THE LAYERS AND SNOW WATER WERE COMPUTED AS NEARLY STEADY-STATE VALUES BY THE PROGRAM.

LAYER 1

TYPE 1 - VERTICAL PERCOLATION LAYER MATERIAL TEXTURE NUMBER 9

THICKNESS	=	6.00 INCHES
POROSITY	-	0.5010 VOL/VOL
FIELD CAPACITY	-	0.2840 VOL/VOL
WILTING POINT	=	0.1350 VOL/VOL
INTTIAL SOIL WATER CONTENT	=	0.3074 VOL/VOL
EFFECTIVE SAT. HYD. COND.	÷	0.19000006000E-03 CM/SEC
NOTE - SATURATED HYDRAULIC CO	ONDUC	CTIVITY IS MULTIPLIED BY 4.63
FOR ROOT CHANNELS IN	J TOI	P HALF OF EVAPORATIVE ZONE.

LAYER 2

TYPE 1 - VERTICAL PERCOLATION LAYER

MATERIAL TEXT	URE NUMBER 22	
THICKNESS	= 18.00 INCHES	
POROSITY	= 0.4190 VOL/VOL	
FIELD CAPACITY	= 0.3070 VOL/VOL	
WILTING POINT	= 0.1800 VOL/VOL	
INITIAL SOIL WATER CONTENT	= 0.2917 VOL/VOL	
EFFECTIVE SAT. HYD. COND.	= 0.189999992000E-04 CM/SEC	

LAYER 3

TYPE 2 - LATERAL DRAINAGE LAYER MATERIAL TEXTURE NUMBER 5

THICKNESS	=	12.00 INCHES
POROSITY	=	0.4570 VOL/VOL
FIELD CAPACITY	CÊ.	0.1310 VOL/VOL
WILTING POINT	=	0.0580 VOL/VOL
INITIAL SOIL WATER CONTENT	=	0.1480 VOL/VOL
EFFECTIVE SAT. HYD. COND.	=	0.100000005000E-02 CM/SEC
SLOPE	=	25.00 PERCENT
DRAINAGE LENGTH	=	140.0 FEET

LAYER 4

TYPE 4 - FLEXIBLE MEMBRANE LINER MATERIAL TEXTURE NUMBER 35

INT DICTUT TOTAL	C. T. C. T.	
THICKNESS	=	0.06 INCHES
POROSITY	-	0.0000 VOL/VOL
FIELD CAPACITY	=	0.0000 VOL/VOL
WILTING POINT	-	0.0000 VOL/VOL
INITIAL SOIL WATER CONTENT	-	0.0000 VOL/VOL
EFFECTIVE SAT. HYD. COND.	-	0.199999996000E-12 CM/SEC
FML PINHOLE DENSITY	-	1.00 HOLES/ACRE
FML INSTALLATION DEFECTS	-	1.00 HOLES/ACRE
FML PLACEMENT QUALITY	=	3 - GOOD
FMD FDACDMDAT Southers		

LAYER 5

TYPE 3 - BARRIER SOIL LINER MATERIAL TEXTURE NUMBER 17

11111111111	and the second s		the set when a site band	
THICKNESS	=	0.24	INCHES	
POROSITY	-		VOL/VOL	
FIELD CAPACITY	-		VOL/VOL	
WILTING POINT	-	0.4000	VOL/VOL	

INITIAL SOIL WATER CONTENT = 0.7500 VOL/VOL EFFECTIVE SAT. HYD. COND. = 0.30000003000E-08 CM/SEC

LAYER 6

TYPE 1 - VERTICAL PERCOLATION LAYER MATERIAL TEXTURE NUMBER 22

THICKNESS	=	12.00 INCHES
POROSITY	=	0.4190 VOL/VOL
FIELD CAPACITY	=	0.3070 VOL/VOL
WILTING POINT	-	0.1800 VOL/VOL
INITIAL SOIL WATER CONTENT	=	0.3053 VOL/VOL
EFFECTIVE SAT. HYD. COND.	=	0.1899999992000E-04 CM/SEC

LAYER 7

TYPE 1 - VERTICAL PERCOLATION LAYER MATERIAL TEXTURE NUMBER 5

12.00 INCHES
0.4570 VOL/VOL
0.1310 VOL/VOL
0.0580 VOL/VOL
0.1298 VOL/VOL
100000005000E-02 CM/SEC

GENERAL DESIGN AND EVAPORATIVE ZONE DATA

NOTE: SCS RUNOFF CURVE NUMBER WAS USER-SPECIFIED.

SCS RUNOFF CURVE NUMBER FRACTION OF AREA ALLOWING RUNOFF AREA PROJECTED ON HORIZONTAL PLANE EVAPORATIVE ZONE DEPTH INITIAL WATER IN EVAPORATIVE ZONE UPPER LIMIT OF EVAPORATIVE STORAGE LOWER LIMIT OF EVAPORATIVE STORAGE INITIAL SNOW WATER INITIAL SNOW WATER INITIAL WATER IN LAYER MATERIALS TOTAL INITIAL WATER	 $ \begin{array}{r} 69.00\\ 100.0\\ 1.000\\ 8.0\\ 2.184\\ 3.844\\ 1.170\\ 0.000\\ 14.271\\ 14.271\\ 14.271 \end{array} $	PERCENT ACRES INCHES INCHES INCHES INCHES INCHES INCHES
TOTAL INITIAL WATER TOTAL SUBSURFACE INFLOW	 0.00	INCHES/YEAR

EVAPOTRANSPIRATION AND WEATHER DATA

NOTE: EVAPOTRANSPIRATION DATA WAS OBTAINED FROM LACROSSE WISCONSIN

MAXIMUM LEAF AREA INDEX		3,50		
START OF GROWING SEASON (JULIAN DATE)		130		
END OF GROWING SEASON (JULIAN DATE)		275		
AVERAGE ANNUAL WIND SPEED	=	10.00		
AVERAGE 1ST OUARTER RELATIVE HUMIDITY	=	73.00	00	
AVERAGE 2ND OUARTER RELATIVE HUMIDITY	Ħ	68.00	b.	
AVERAGE 3RD OUARTER RELATIVE HUMIDITY		74.00	1.	
AVERAGE 4TH QUARTER RELATIVE HUMIDITY	=	76.00	of of	

NOTE: PRECIPITATION DATA WAS SYNTHETICALLY GENERATED USING COEFFICIENTS FOR LACROSSE WISCONSIN

NORMAL MEAN MONTHLY PRECIPITATION (INCHES)

JAN/JUL	FEB/AUG	MAR/SEP	APR/OCT	MAY/NOV	JUN/DEC
0.94	0.89	1.96	3.05	3,61	4.15
3.83	3.70	3.47	2.08	1.50	1.07

NOTE: TEMPERATURE DATA WAS SYNTHETICALLY GENERATED USING COEFFICIENTS FOR LACROSSE WISCONSIN

NORMAL MEAN MONTHLY TEMPERATURE (DEGREES FAHRENHEIT)

JAN/JUL	FEB/AUG	MAR/SEP	APR/OCT	MAY/NOV	JUN/DEC
14.00	19.70	30.90	47.20	59.40	68.50
73.00	70.90	61.60	50.40	35.30	21.50

NOTE: SOLAR RADIATION DATA WAS SYNTHETICALLY GENERATED USING COEFFICIENTS FOR LACROSSE WISCONSIN

STATION LATITUDE = 43.75 DEGREES

AVERAGE MONTHLY VALUES IN INCHES FOR YEARS 1 THROUGH 10

	JAN/JUL	FEB/AUG	MAR/SEP	APR/OCI	MAIIMOV	DON/DEC	
	1						
PRECIPITATION							
TOTALS	0.78	0.76	1.64	2,92	4.47	3.61	
TOTALS	4.25	4.01	3,05	2.04	1.29	1.11	

))						
STD. DEVIATIONS	0.23	0.45	0.69 1.73	1.16 1.06	2.17 0.88	1.89 0.38
RUNOFF						
TOTALS	0.091	0.163 0.049	0.550 0.000	0.634 0.000	0.001 0.007	0.014 0.066
STD. DEVIATIONS	0.097	0.311 0.155	0.430 0.000	0.741 0.000	0.002 0.021	0.043 0.101
EVAPOTRANSPIRATION						
TOTALS	0.455 3.920	0.624 2.645	1.399 2.368	2.425 1.305	3.099 0.759	3.126 0.438
STD. DEVIATIONS	0.093 1.245	0.135 1.230	0.341 0.877	0.735 0.476	1.165 0.225	1.048 0.106
LATERAL DRAINAGE COLLI	ECTED FROM J	LAYER 3				
TOTALS	0.2397 0.7090	0.0929 0.7773	0.0606 0.7111	0.1506 0.6786	0.4959 0.5899	0.7490
STD. DEVIATIONS	0.2378 0.5868	0.0944 0.4756	0.0911 0.3497	0.2552 0.4876	0.4550 0.3738	0.5983
PERCOLATION/LEAKAGE TH	HROUGH LAYEI	R 5				
TOTALS	0.0000 0.0000	0.0000 0.0000	0.0000	0.0000 0.0000	0.0000 0.0000	0.0000
STD. DEVIATIONS	0.0000	0.0000	0.0000	0.0000 0.0000	0.0000	0.0000
PERCOLATION/LEAKAGE T	ROUGH LAYE	z 7				
TOTALS		0.0018 0.0019	0.0019 0.0018	0.0019 0.0019	0.0019 0.0018	0.0018
STD. DEVIATIONS		0.0004 0.0004		0.0004 0.0004	0.0004 0.0004	0.0004
	OF MONTHLY				ES)	
	**********				505555555	0000000
DAILY AVERAGE HEAD AC	ROSS LAYER	5				
AVERAGES	0.8081 2.4002	0.3484 2.6316			1.6789 2.0636	2.6204 1.4444
STD. DEVIATIONS	0.8039 1.9868	0.3540 1.6101	0.3084 1.2234		1.5405 1.3076	
******	* * * * * * * * * * * *	*****	******	******	******	* * * * * * * *

AVERAGE ANNUAL TOTALS & (STD. DEVIATIONS) FOR YEARS 1 THROUGH 10

 \sim

	INCI	HES	8	CU. FEET	PERCENT
PRECIPITATION	29.93	(3.273)	108627.8	100.00
RUNOFF	1,575	(0.9711)	5716.84	5.263
EVAPOTRANSPIRATION	22.565	(1.7313)	81909.50	75.404
LATERAL DRAINAGE COLLECTED FROM LAYER 3	5.68111	(2.46024)	20622.424	18,98449
PERCOLATION/LEAKAGE THROUGH LAYER 5	0.00015	(0.00007)	0.531	0.0004
AVERAGE HEAD ACROSS TOP OF LAYER 5	1.626 (0.704)		
PERCOLATION/LEAKAGE THROUGH LAYER 7	0.02238	¢	0.00487)	81.239	0.0747
CHANGE IN WATER STORAGE	0.082	(1.0111)	297.75	0.274

PEAK DAILY VALUES FOR YEARS	1 THROUGH	10
	(INCHES)	(CU. FT.)
PRECIPITATION	3.09	11216.699
RUNOFF	1.056	3834.6309
DRAINAGE COLLECTED FROM LAYER 3	0.07979	289.65002
PERCOLATION/LEAKAGE THROUGH LAYER 5	0.00003	0.0097
AVERAGE HEAD ACROSS LAYER 5	8.375	
PERCOLATION/LEAKAGE THROUGH LAYER 7	0.000105	0.3824
SNOW WATER	1.68	6098.3999
MAXIMUM VEG. SOIL WATER (VOL/VOL)	ο.	4696
MINIMUM VEG. SOIL WATER (VOL/VOL)	0.	0960

FINAL WATER	STORAGE AT EN	D OF YEAR 10
LAYER	(INCHES)	(VOL/VOL)
1	1.8192	0.3032
2	5.5664	0.3092
з	1.7553	0.1463
4	0.0000	0.0000
5	0.1770	0.7500
6	3.5334	0.2945
7	1.4660	0.1222
SNOW WATER	0.000	

**		
		* *
* *		* *
**	HYDROLOGIC EVALUATION OF LANDFILL PERFORMANCE	* *
**	HELP MODEL VERSION 3.03 (31 DECEMBER 1994)	**
**	DEVELOPED BY ENVIRONMENTAL LABORATORY	* *
**	USAE WATERWAYS EXPERIMENT STATION	**
	FOR USEPA RISK REDUCTION ENGINEERING LABORATORY	**
	FOR USEFA RISK REDUCTION INCLUDING INCLUDING	**
**		**
**	**********	*****

PRECIPITATION DATA FILE:C:\HELP\DATA4.D4TEMPERATURE DATA FILE:C:\HELP\DATA7.D7SOLAR RADIATION DATA FILE:C:\HELP\DATA13.D13EVAPOTRANSPIRATION DATA:C:\HELP\DATA11.D11SOIL AND DESIGN DATA FILE:C:\HELP\DATA6.D10OUTPUT DATA FILE:C:\HELP\OUT3.OUT

TIME: 9:40 DATE: 6/27/2003

.

TITLE: Dairyland Power DPC Proposed

NOTE: INITIAL MOISTURE CONTENT OF THE LAYERS AND SNOW WATER WERE COMPUTED AS NEARLY STEADY-STATE VALUES BY THE PROGRAM.

LAYER 1

TYPE 1 - VERTICAL PERCOLATION LAYER MATERIAL TEXTURE NUMBER 9 6.00 INCHES -THICKNESS 0.5010 VOL/VOL = POROSITY 0.2840 VOL/VOL = FIELD CAPACITY 0.1350 VOL/VOL WILTING POINT = 0,3074 VOL/VOL INITIAL SOIL WATER CONTENT = = 0.19000006000E-03 CM/SEC EFFECTIVE SAT. HYD. COND. NOTE: SATURATED HYDRAULIC CONDUCTIVITY IS MULTIPLIED BY 4.63 FOR ROOT CHANNELS IN TOP HALF OF EVAPORATIVE ZONE.

LAYER 2

TYPE 1 - VERTICAL PERCOLATION LAYER

MATERIAL	TEXTURE	NUMBER	22	
----------	---------	--------	----	--

I II I I I I I I I I I I I I I I I I I		
THICKNESS	-	18.00 INCHES
POROSITY	=	0.4190 VOL/VOL
FIELD CAPACITY	=	0.3070 VOL/VOL
WILTING POINT	-	0.1800 VOL/VOL
INITIAL SOIL WATER CONTENT	-	0.2917 VOL/VOL
EFFECTIVE SAT. HYD. COND.	. (m)	0.189999992000E-04 CM/SEC

LAYER 3

TYPE 2 - LATERAL DRAINAGE LAYER MATERIAL TEXTURE NUMBER 2

THICKNESS	=	12.00 INCHES
POROSITY	-	0.4370 VOL/VOL
FIELD CAPACITY	-	0.0620 VOL/VOL
WILTING POINT	-	0.0240 VOL/VOL
INITIAL SOIL WATER CONTENT	=	0.0620 VOL/VOL
EFFECTIVE SAT. HYD. COND.	=	0.579999993000E-02 CM/SEC
SLOPE	=	25.00 PERCENT
DRAINAGE LENGTH	=	140.0 FEET
Didition Barrout		

LAYER 4

TYPE 4 - FLEXIBLE MEMBRANE LINER MATERIAL TEXTURE NUMBER 35

MAIDRIAD IDA.	TOTT	IVOTIDERC 55
THICKNESS	=	0.06 INCHES
POROSITY	-	0.0000 VOL/VOL
FIELD CAPACITY	=	0.0000 VOL/VOL
WILTING POINT	-	0.0000 VOL/VOL
INITIAL SOIL WATER CONTENT	-	0.0000 VOL/VOL
EFFECTIVE SAT. HYD. COND.		0.199999996000E-12 CM/SEC
FML PINHOLE DENSITY	-	1.00 HOLES/ACRE
FML INSTALLATION DEFECTS	-	1.00 HOLES/ACRE
FML PLACEMENT QUALITY	-	3 - GOOD
This Thistian Korners		

LAYER 5

	TYPE 3 - MATERIAL		SOIL LINER NUMBER 0	
THICKNESS		=	24.00	
POROSITY		-	0.5410	VOL/VOL
FIELD CAPACIT	Y	=	0.1870	VOL/VOL
WILTING POINT		=	0.0470	VOL/VOL

INITIAL SOIL WATER CONTENT = 0.5410 VOL/VOL EFFECTIVE SAT. HYD. COND. = 0.999999997000E-06 CM/SEC

GENERAL DESIGN AND EVAPORATIVE ZONE DATA

NOTE: SCS RUNOFF CURVE NUMBER WAS USER-SPECIFIED.

SCS RUNOFF CURVE NUMBER	=	69.00	
FRACTION OF AREA ALLOWING RUNOFF	$\phi = 10$	100.0	PERCENT
AREA PROJECTED ON HORIZONTAL PLANE	-	1.000	ACRES
EVAPORATIVE ZONE DEPTH	-	8.0	INCHES
INITIAL WATER IN EVAPORATIVE ZONE	-	2.184	INCHES
UPPER LIMIT OF EVAPORATIVE STORAGE	-	3.844	INCHES
LOWER LIMIT OF EVAPORATIVE STORAGE	-	1.170	INCHES
INITIAL SNOW WATER	=	0.000	INCHES
INITIAL WATER IN LAYER MATERIALS	-	20.825	INCHES
TOTAL INITIAL WATER	=	20.825	INCHES
TOTAL SUBSURFACE INFLOW	-	0.00	INCHES/YEAR
A REPORT OF A R			

EVAPOTRANSPIRATION AND WEATHER DATA

NOTE: EVAPOTRANSPIRATION DATA WAS OBTAINED FROM LACROSSE WISCONSIN

MAXIMUM LEAF AREA INDEX		=	3.50		
START OF GROWING SEASON (JUL	IAN DATE)		130		
END OF GROWING SEASON (JULIA	N DATE)	=	275		
AVERAGE ANNUAL WIND SPEED		=	10.00		
AVERAGE 1ST QUARTER RELATIVE	HUMIDITY	=	73.00	8	
AVERAGE 2ND QUARTER RELATIVE	HUMIDITY	=	68.00	8	
AVERAGE 3RD OUARTER RELATIVE	HUMIDITY		74.00		
AVERAGE 4TH QUARTER RELATIVE	HUMIDITY	=	76.00	olo lo	

NOTE: PRECIPITATION DATA WAS SYNTHETICALLY GENERATED USING COEFFICIENTS FOR LACROSSE WISCONSIN

NORMAL MEAN MONTHLY PRECIPITATION (INCHES)

JAN/JUL	FEB/AUG	MAR/SEP	APR/OCT	MAY/NOV	JUN/DEC
0.94	0.89	1.96	3.05	3.61	4.15
3.83	3.70	3.47	2.08	1.50	1.07

NOTE: TEMPERATURE DATA WAS SYNTHETICALLY GENERATED USING COEFFICIENTS FOR LACROSSE WISCONSIN

NORMAL MEAN MONTHLY TEMPERATURE (DEGREES FAHRENHEIT)

JAN/JUL	FEB/AUG	MAR/SEP	APR/OCT	MAY/NOV	JUN/DEC
14.00	19.70	30.90	47,20	59.40	68.50
73.00	70.90	61.60	50.40	35,30	21.50

.

NOTE: SOLAR RADIATION DATA WAS SYNTHETICALLY GENERATED USING COEFFICIENTS FOR LACROSSE WISCONSIN

STATION LATITUDE = 43.75 DEGREES

AVERAGE MONTHLY VALUES IN INCHES FOR YEARS 1 THROUGH 10

	JAN/JUL	FEB/AUG	MAR/SEP	APR/OCT	MAY/NOV	JUN/DEC	
PRECIPITATION			0222000	1000000			
TOTALS	0.78 4.25	0.76 4.01	1.64 3.05	2.92 2.04	4.47 1.29	3.61 1.11	
STD. DEVIATIONS	0.23 2.26	0,45 2.04	0.69 1.73	1.16 1.06	2.17 0.88	1.89 0.38	
RUNOFF							
TOTALS	0.091 0.000	0.163 0.049	0.550	0.634 0.000	0.001 0.007	0.014 0.066	
STD. DEVIATIONS	0.097 0.000	0.311 0.155	0.430 0.000	0.741 0.000	0.002 0.021	0.043 0.101	
EVAPOTRANSPIRATION							
TOTALS	0.455 3.920	0.624 2.645	1.399 2.368	2.425	3.099 0.759	3.126 0.438	
STD. DEVIATIONS	0.093 1.245	0.135 1.230	0.341 0.877	0.735 0.476	1.165 0.225	1.048 0.106	
LATERAL DRAINAGE COLLI	ECTED FROM	LAYER 3					
TOTALS	0.0671 0.6192						
STD. DEVIATIONS	0.1170 0.5249					0,9365 0.3763	
PERCOLATION/LEAKAGE TH	HROUGH LAY	ER 5					
TOTALS	0.0000	0.0000	0.0000	0.000	0.0001	0.0001	

		0 0001	0.0001	0.0001	0.000	1 0.000
	0.0001	0.0001	0.0001	0.0001	0.000	1 0.000
STD. DEVIATIONS	0.0000	0.0000	0.0000 0.0001	0.0001 0.0001	0.000	
AVERAGES OF	MONTHLY	AVERAGE	D DAILY HEA	ADS (INCH)	ES)	
DAILY AVERAGE HEAD ACROSS	5 LAYER	5				
AVERAGES	0.0390 0.3615	0.0010		0.1733 0.3363	0.497	
STD. DEVIATIONS		0.0021		0.3445	0.433 0.297	
*********	*****	*****	*****	*****	****	****
*****	*****	******* DEVIATI	*********** ONS) FOR YI	*****	****** THROUG	******** H 10
******	*****	****** DEVIATI INCHE	*********** ONS) FOR YI	********* EARS 1	******* THROUGI ET	****
**************************************	********* & (STD. 29.	******* DEVIATI INCHE 93 (********** ONS) FOR YI	********** EARS 1 CU. FE	******* THROUGI ET 7 . 8	********** H 10 PERCENT
**************************************	********* & (STD. 29.	******* DEVIATI INCHE 93 (575 (**************************************	********** EARS 1 CU. FE 10862'	******* THROUG ET 7.8 6.84	********* H 10 PERCENT 100,00
**************************************	& (STD. 29. 1. 22.	******* DEVIATI INCHE 93 (575 (*********** ONS) FOR YH S 3.273) 0.9711)	CU. FEI 10862 5710 8190	******* THROUG ET 7.8 6.84	********* H 10 PERCENT 100.00 5.263
**************************************	& (STD. 29. 1. 22. 5.	******* DEVIATI INCHE 93 (575 (565 (**************************************	EARS 1 CU. FEI 10862 5710 8190 20612	******* THROUG ET 7.8 6.84 9.50	********** H 10 PERCENT 100.00 5.263 75.404
**************************************	********* & (STD. 29. 1. 22.) 5. ЭН 0.	******* DEVIATI 93 (575 (565 (67829 (**************************************	EARS 1 CU. FEI 10862 5710 8190 20612	******* THROUG ET 7.8 6.84 9.50 2.191	**************************************

PEAK DAILY VALUES FOR YEARS		10
	(INCHES)	(CU. FT.)
PRECIPITATION	3.09	11216,699
RUNOFF	1.056	3834.6309
DRAINAGE COLLECTED FROM LAYER 3	0.16227	589.04468
PERCOLATION/LEAKAGE THROUGH LAYER 5	0.000014	0.05028
AVERAGE HEAD ACROSS LAYER 5	2.936	
SNOW WATER	1.68	6098.3999
MAXIMUM VEG. SOIL WATER (VOL/VOL)	0.	4696
MINIMUM VEG. SOIL WATER (VOL/VOL)	Ο.	0960

-

FINAL WATER	STORAGE AT E	END OF YEAR 10	
 LAYER	(INCHES)	(VOL/VOL)	10010
1	1.8192	0.3032	
2	5,5664	0.3092	
3	0.7478	0.0623	
4	0.0000	0.0000	
5	12.9840	0.5410	
SNOW WATER	0.000		

Appendix E Revised Closure Cost Estimates

Worst-case Site Closure Scenario (Cell 3)

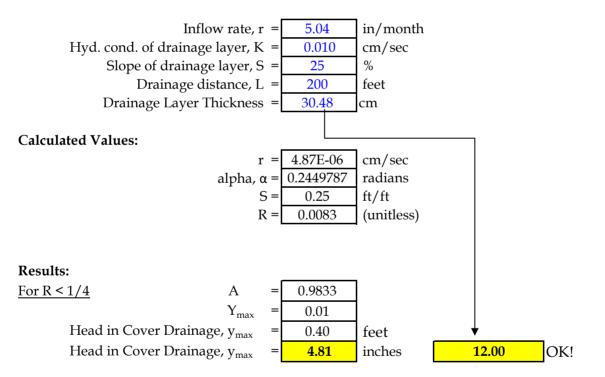
Assumptions

- Cell 3 closure is the worst-case closure scenario. Closure of Cell 3 includes a portion of Cells 1, 2A, and 2B due to the intermediate slopes for a total of approximately 12.4 acres (542,300 SF).
- Proper drainage grades are established upon closure of Cell 3, and no additional grading costs are encountered.
- The conditioned and compacted ash component of the final cover is not yet placed. Imported fine-grained soil is utilized for construction of the 2-foot-thick barrier component of the final cover.
- Unit prices are based on previous liner and final cover construction projects.

Final Cover System

\$261,100
195,200
335,700
75,900
15,000
50,000
16,700
\$949,600
\$ 20,000
88,000
20,000
<u>\$ 128,000</u>
\$1,077,600
<u>\$ 269,400</u>
\$1,347,000

J.2 Saturated Head on the Final Cover Liner


999 Fourier Drive, Suite 10	1, Madison, WI 53717 • www.TR	Ccompanies.com	SHEET 1 OF 1
PROJECT / LOCATION: DPC CCR Landfill, Alma, Wisco:	nsin	PROJECT / PROPOSAL NO.	
SUBJECT: Maximum Head on Final Cover			
PREPARED BY: Z. Bauman	DATE: 12.21.2022	FINAL 🗆	
CHECKED BY: A. Graham	DATE: 12.30.2022	REVISION 🗆	

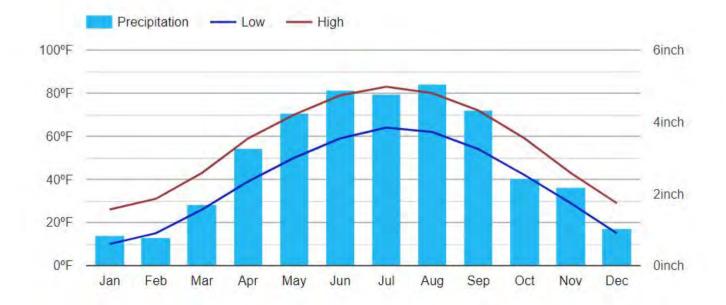
MAXIMUM SATURATED DEPTH (McENROE'S 1993 METHOD)

Summary:

Per s. NR 504.07(6)(a), a drainage layer shall consist of a minimum of one foot of sand with a minimum hydraulic conductivity of 1 x 10⁻³ cm/sec. This calculation demonstrates the anticipated maximum head in the drainage layer is less than the thickness of the drainage layer, based on anticipated annual rainfall and infiltration into the cover system.

Inputs:

Assumptions:


1. Inflow rate (r) is based on the largest monthly average rainfall (August) in Alma, Wisconsin from the U.S. Climate Data website.

2. The K value is based on historical hydraulic conductivity test results used at the site for closure construction.

Alma weather averages

	Jul	Aug	Sep	Oct	Nov	Dec
Average high in °F	83	80	72	59	43	29
Average low in °F	64	62	54	42	29	15
Av. precipitation in inch	4.77	5.04	4.32	2,44	2.18	1.03
Av. snowfall in inch	0	0	0	0	2	10

Alma Climate Graph - Wisconsin Climate Chart

56°F
39°F
35.46 inch
36 inch

Station Data

Monthly averages Alma Longitude: -91.9149, Latitude: 44.32 Average weather Alma, WI - 54610

Monthly: 1981-2010 normals

J.3 Final Cover Event 2A Interface Stability Evaluation

Phase IV, Cell 2A, Final Cover Construction Documentation Report WDNR License No. 4126

Dairyland Power Cooperative Alma Off-Site Ash Disposal Facility

December 2011

Prepared For Dairyland Power Cooperative La Crosse, Wisconsin

U. Martin

Todd W. Martin Solid Waste Team Leader

Nicholas Bower Environmental Specialist

TRC Environmental Corporation | Dairyland Power Cooperative Final \\NTAPB-MADISON\MSN-VOL6\-\WPMSN\PJT1\02250\25\005\R0225025005-001.DOCX

Curtis D. Madsen, P.E.

Senior Project Manager

© 2011 TRC All Rights Reserved Interface Slope Stability Calculation

INTERFACE SLOPE STABILITY

Table of Contents

- Purpose/Methodology/Assumptions/Results/References
- Calculations

PROJECT / PROPOSAL NAME / LOCATION: D Final Cover Construction	PROJECT / PROPOSAL NO. 02250.25.002	
SUBJECT: Interface Slope Stability		
PREPARED BY: T. Halena	DATE: 8/04/11	FINAL 🛛
CHECKED BY: S. Inman	DATE: 08/06/11	REVISION 🗆

INTERFACE SLOPE STABILITY

Purpose:

The purpose of this analysis is to evaluate the stability of the final cover system against slippage along the critical interfaces of the geomembrane and adjacent soil.

Methodology:

The cover system interface stability was evaluated following the procedure outlined in Giroud and Beach (1989). Giroud and Beach derived an equation using a classical two-wedge analysis that determines the magnitude of tension forces developed in the geosynthetics from the weight of the soil cover. This equation has been modified by Druschel and Underwood (1993) to include hydrostatic pressures in the cover soil, and by Bourdeau, Ludlow, and Simpson (1993) to include adhesion between the critical interfaces.

Assumptions:

Final Cover Design

The final cover system components consist of the following, from top to bottom:

- a 6-inch-thick topsoil layer
- a 1.5-foot-thick soil cover (general fill) layer (rooting zone layer)
- a 1-foot-thick sand drainage layer
- a 40-mil textured LLDPE geomembrane
- a 2-foot-thick conditioned and compacted fly ash layer

Soil Strength Parameters

Soil strength parameters were assumed from typical engineering values and previous test results)

Interface Strength Parameters

Direct shear testing was performed on the sand/40-mil LLDPE textured geomembrane and the fly ash/40-mil LLDPE textured geomembrane interfaces to determine site specific values for these interfaces and the associated strength parameters. Each interface was evaluated for confining pressures of 200, 600, and 1,000 pounds per square foot. The sand was lightly tamped into the box for direct shear testing. The fly ash was a blend of approximately 65 percent (by weight) JPM fly ash and approximately 35 percent (by weight) ALMA-I5 fly ash and was

PROJECT / PROPOSAL NAME / LOCATION: DPC Phase IV, Cell 2A		PROJECT / PROPOSAL NO.
Final Cover Construction		
SUBJECT: Interface Slope Stability	02250.25.002	
PREPARED BY: T. Halena	DATE: 8/04/11	FINAL
CHECKED BY: S. Inman	DATE: 08/06/11	REVISION C

remolded at 11 percent moisture content. The interface was soaked and loading was applied for 24 hours prior to interface testing.

Direct shear testing was performed on the above-described cover system in accordance with ASTM D6243/D5321. Interface strength parameters (friction angle and adhesion) were measured at the peak strength and residual (large displacement) strength. The testing results are summarized below.

FINAL COVER	PEAK	PEAK	RESIDUAL	RESIDUAL
INTERFACE	FRICTION	ADHESION	FRICTION	ADHESION
	ANGLE	(psf)	ANGLE	(psf)
	(degrees)	-	(degrees)	
Sand/40-mil				
LLDPE textured	33.2	86	30.4	48
geomembrane				
Fly ash/40-mil				
LLDPE textured	61.0	389	22.2	93
geomembrane				

Slope Stability Analysis

The Giroud and Beach stability method assumes the following:

- Slope failures slide as a block.
- The slope toe is buttressed where the cover soil on the slope meets the smaller inclined cover soil at the toe of slope.
- The cover soil is free draining and has a uniform thickness.

Geometry

The critical geometry for the designed landfill is shown on Sheet 4 of 10 and is described as follows:

- Slope angle = 14 degrees (4H:1V slope)
- Slope height = 26 feet

Seepage Thickness

The seepage thickness within the final cover system was estimated assuming that the 1-footthick sand drainage layer, the 1.5-foot-thick soil cover (general fill) layer, and the 6-inch-thick topsoil layer are fully saturated, which is the worst-case scenario. The geomembrane acts as an

PROJECT / PROPOSAL NAME / LOCATION: DPC Phase IV, Cell 2A		PROJECT / PROPOSAL NO.
Final Cover Construction		
SUBJECT: Interface Slope Stability		02250.25.002
PREPARED BY: T. Halena	DATE: 8/04/11	FINAL 🙄
CHECKED BY: S. Inman	DATE: 08/06/11	REVISION 🗆

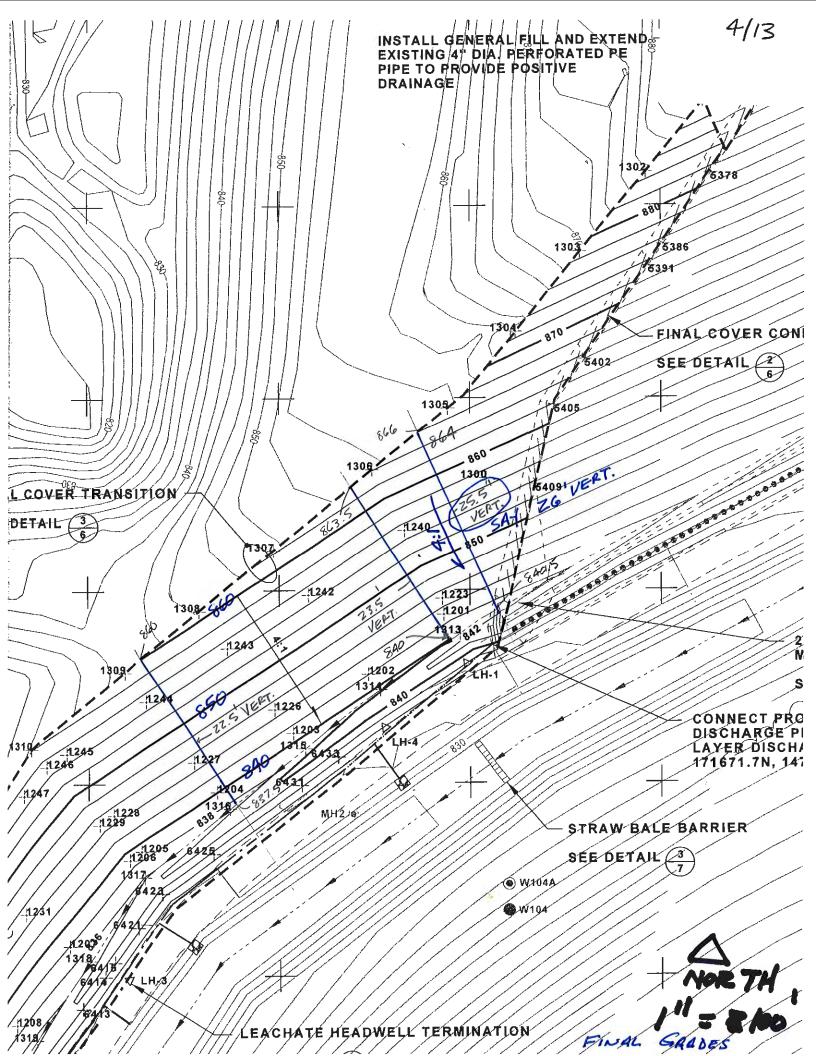
impermeable barrier which allows no seepage through to the interface with the underlying fly ash layer.

Soil Characteristics

The soil characteristics are from typical engineering values:

- Cover soil internal friction angle = 30 degrees
- Cohesion = 0 lbs/ ft²
- Cover soil unit weight = 115 lbs/ft³

Results:


The cover system analysis indicates a minimum factor of safety of 1.70. The factor of safety is above the design factor of safety of 1.3, as specified in NR 514.07 (1) (b). The computer printouts for the analyses are attached.

References:

- Bourdeau, P.L., Ludlow, S.J., and Simpson, B.E., (1993) Stability of Soil-Covered Geosynthetic-Lined Slopes: A Parametric Study, presented at the Geosynthetics 1993 Conference in Vancouver, Canada.
- Druschel, S.J. and Underwood, E.R., (1993) Design of Lining and Cover System Sideslopes, presented at the Geosynthetics 1993 Conference in Vancouver, Canada.

Giroud, J.P. and Beach, J.F., (1989) Stability of Soil Layers on Geosynthetic Lining Systems, presented at the Geosynthetics 1989 Conference in San Diego, California.

RMT, Inc., (2009), Phase IV, Cell 1, Final Cover Documentation Report, WDNR Lic. No. 4126.

i

744 Heartland Trai) Madison, WI 53717 (608) 831-4444 • Fax (608) 831-3334

SHEET 1 OF 1

PROJECT / PROPOSAL NAME / LOCATION: DPC Phase IV, Cell 2A Final Cover Construction		PROJECT / PROPOSAL NO.
SUBJECT: Interface Slope Stability		02250.25.005
PREPARED BY: T. Halena	DATE: 8/04/11	FINAL _
CHECKED BY: S. Inman	DATE: 8/06/11	REVISION

GEOSYNTHETIC TENSION CALCULATION

Location/condition modeled:	Waubasha Sand D Results)	r. Layer/Textured GSE Geomem.Interface (Peak
Variables		
 Slope Angle (deg)	14.0	
Interface Friction Angle (deg)	33.2	
Adhesion (psf)	86.0	Waubasha Sand Drainage Layer/Textured GSE Geomembrane
Cover Soil Friction Angle (deg)	30.0	
Cohesion (psf)	0	
Slope Height (ft)	26	
Cover Soil Thickness (ft)	3.0	
Cover Soil Unit Weight (pcf)	115.0	
Seepage Thickness (ft)	3.000	Assume Full Saturation
Calculated Values		
Weight Passive (lb/ft)	22 05	
Weight Active (lb/ft)	34 87 3	
Adhesion Force (lb/ft)	9 2 43	
Cohesion Force (lb/ft)	0	
Seepage Toe Weight (lb/ft)	1196	
Seepage Slope Weight (lb/ft)	1 892 3	
Geosynthetic Tension (lb/in)		
FS = 1.0	-981	
FS = 1.2	-668	
FS = 1.5	-375	
FS = 2.0	-94	

744 Heartland Trail Madison, WI 53717 (608) 831-4444 • Fax (608) 831-3334

SHEET 1 OF 1

PROJECT 7 PROPOSAL NAME / LOCATION: DPC Phase IV, Cell 2A Final C	PROJECT / PROPOSAL NO.	
SUBJECT: Interface Slope Stability		02250.25.005
PREPARED BY: T. Halena	DATE: 8/04/11	FINAL C
CHECKED BY: S. Inman	DATE: 8/06/11	REVISION :

GEOSYNTHETIC TENSION CALCULATION

Location/condition modeled:	Textured GSE Geo (Residual)	membrane/Waubasha Sand Dr. Layer Interface
Variables		
Slope Angle (deg)	14.0	
Interface Friction Angle (deg)	30.4	
Adhesion (psf)	48.0	Waubasha Sand Drainage LayerTextured Geomembrane
Cover Soil Friction Angle (deg)) 30.0	
Cohesion (psf)	0	
Slope Height (ft)	26	
Cover Soil Thickness (ft)	3.0	
Cover Soil Unit Weight (pcf)	115.0	
Seepage Thickness (ft)	3.000	Assume Full Saturation
Calculated Values		
Weight Passive (lb/ft)	2205	
Weight Active (lb/ft)	34873	
Adhesion Force (lb/ft)	5159	
Cohesion Force (lb/ft)	0	
Seepage Toe Weight (lb/ft)	1196	
Seepage Slope Weight (lb/ft)	18923	
Geosynthetic Tension (lb/in)		
FS = 1.0	-554	
FS = 1.2	-319	
F S = 1.5	-99	
FS = 2.0	110	

744 Heartland Trail Madison, WI 53717 (608) 831-4444 • Fax (608) 831-3334

5HEET 1 OF 1

7/13

PROJECT / PROPOSAL NAME / LOCATION: DPC Phase IV	PROJECT / PROPOSAL NO.	
SUBJECT: Interface Slope Stability		02250.25.005
PREPARED BY: T. Halena	DATE: 8/04/11	FINAL 🖞
CHECKED BY: S. Inman	DATE: 8/06/11	REVISION D

GEOSYNTHETIC TENSION CALCULATION

Location/condition modeled:

Fly Ash Composite/Textured GSE Geomem. Interface (Peak Results)

		es

Slope Angle (deg)	14.0	
Interface Friction Angle (deg)	61.0	
Adhesion (psf)	389.0	Composite Fly Ash/Textured Geomembrane
Cover Soil Friction Angle (deg)	30.0	
Cohesion (psf)	0	
Slope Height (ft)	26	
Cover Soil Thickness (ft)	3.0	
Cover Soil Unit Weight (pcf)	115.0	
Seepage Thickness (ft)	0.000	
Calculated Values		
Weight Passive (lb/ft)	2205	
Weight Active (lb/ft)	34873	
Adhesion Force (lb/ft)	41807	
Cohesion Force (lb/ft)	0	
Seepage Toe Weight (lb/ft)	0	
Seepage Slope Weight (lb/ft)	0	
Geosynthetic Tension (lb/in)		
FS = 1.0	-7996	
FS = 1.2	-5762	
FS = 1.5	-4118	

FS = 1.2	-5762
FS = 1.5	-4118
FS = 2.0	-2754

744 Heartland Trail Madison, WI 53717 (608) 831-4444 • Fax (608) 831-3334

SHEET 1 OF 1

8/13

PROJECT / PROPOSAL NAME / LOCATION: DPC Phase IV,	PROJECT / PROPOSAL NO.	
SUBJECT: Interface Slope Stability		02250.25.005
PREPARED BY: T. Halena	DATE: 8/04/11	FINAL C
CHECKED BY: S. Inman	DATE: 8/06/11	REVISION

GEOSYNTHETIC TENSION CALCULATION

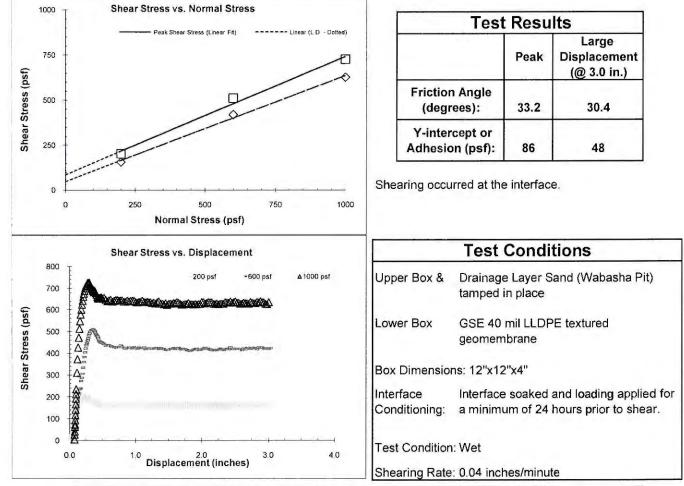
Location/condition modeled:

Fly Ash Composite/Textured GSE Geomem. Interface (Residual)

Variables

Slope Angle (deg)	14.0	
Interface Friction Angle (deg)	22.2	
Adhesion (psf)	93.0	Composite Fly Ash/Textured Geomembrane
Cover Soil Friction Angle (deg)	30.0	
Cohesion (psf)	0	
Slope Height (ft)	26	
Cover Soil Thickness (ft)	3.0	
Cover Soil Unit Weight (pcf)	115.0	
Seepage Thickness (ft)	0.000	
Calculated Values		
 Weight Passive (lb/ft)	2205	
Weight Active (lb/ft)	34873	
Adhesion Force (lb/ft)	9995	
Cohesion Force (lb/ft)	0	
Seepage Toe Weight (lb/ft)	0	
Seepage Slope Weight (lb/ft)	0	
Geosynthetic Tension (lb/in)		
FS = 1.0	-1408	
FS = 1.2	-1034	
FS = 1.5	-673	

FS = 2.0 -321



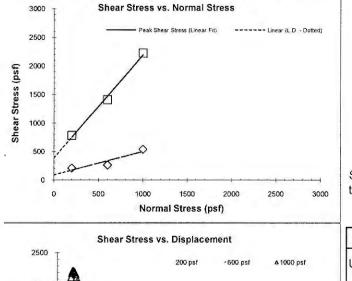
Interface Friction Test Report

Client:TRCTRI Log#: E2357-20-05Project:Dairyland Power - Alma Off-site Cell 2ATest Method: ASTM D 5321Test Date:08/02/11-08/02/11Test Method: ASTM D 5321

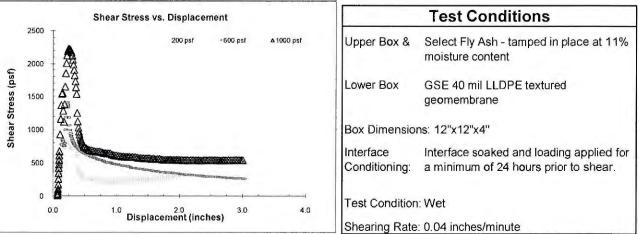
John M. Allen, P.E., 08/02/2011 Quality Review/Date

Tested Interface: Drainage Layer Sand (Wabasha Pit) vs. GSE 40 mil LLDPE Textured Geomembrane (105153620)

Test Data							
Specimen No.	1	2	3				
Bearing Slide Resistance (lbs)	10	14	18				
Normal Stress (psf)	200	600	1000				
Corrected Peak Shear Stress (psf)	201	510	725				
Corrected Large Displacement Shear Stress (psf)	156	419	626				
Peak Secant Angle (degrees)	45.2	40.4	36.0				
Large Displacement Secant Angle (degrees)	38.0	34.9	32.0				
Asperity (mils)	20.4	20.6	19.0				


The testing herein is based upon accepted industry practice as well as the test method listed. Test results reported herein do not apply to samples other than those tested. TRI neither accepts responsibility for nor makes claim as to the final use and purpose of the material. TRI observes and maintains client confidentiality. TRI limits reproduction of this report, except in full, without prior approval of TRI.

9063 Bee Caves Road 🛛 Austin, TX 78733-6201 🖸 (512) 263-2101 🗖 (512) 263-2558 🖾 1-800-880-TEST


Client: TRC TRI Log#: E2357-20-05 Project: Dairyland Power - Alma Off-site Cell 2A Test Method: ASTM D 5321 Test Date: 08/02/11-08/03/11 John M. Allen, P.E., 08/03/2011 Quality Review/Date

Tested Interface: Select Fly Ash vs. GSE 40 mil LLDPE Textured Geomembrane (105153620)

Test	Resu	lts			
	Peak				
Friction Angle (degrees):	61.0	22.2			
Y-intercept or Adhesion (psf):	389	93			

Shearing occurred at the interface. It was noted that the ash became cemented in the shear box.

Test Data							
Specimen No.	1	2	3				
Bearing Slide Resistance (lbs)	10	14	18				
Normal Stress (psf)	200	600	1000				
Corrected Peak Shear Stress (psf)	781	1410	2226				
Corrected Large Displacement Shear Stress (psf)	212	264	539				
Peak Secant Angle (degrees)	75.6	66.9	65.8				
Large Displacement Secant Angle (degrees)	46.7	23.7	28.3				
Asperity (mils)	24.2	22.8	22.2				

The testing herein is based upon accepted industry practice as well as the test method listed. Test results reported herein do not apply to samples other than those tested. TRI neither accepts responsibility for nor makes claim as to the final use and purpose of the material. TRI observes and maintains client confidentiality. TRI limits reproduction of this report, except in full, without prior approval of TRI.

9063 Bee Caves Road 🗆 Austin, TX 78733-6201 🗉 (512) 263-2101 🗇 (512) 263-2558 🗆 1-800-880-TEST

11/13

						RMT, Inc.			(QC:	A.
			C	Constar	t Head Perr	neability Test	: (ASTM D	2434)	(QA:	10
Projec	t Name	e:	DPC								
Projec	t #:		3081.95			υ	SCS Descrip	tion:		Po	orly graded sand
Sampl	e Nam	e:	Select Gra	anular I	ill, Sample #	1 U	SCS Classifi	cation:			. SF
Visual	Descr	ipt:	: Poorly graded sand			. A	verage k, =			8.4E-02	cm./sec
Sampl	e Dian	neter (i	n):		10000 BA	4.00					
Sampl	e Heig	ht (in)				4.63					
Specif	ic Grav	vity:				2.70					
Tare &	Wet S	Soil (g)				770.00					
Tare &	Dry S	Soil (g)				758.80		Sample Type:			Remolded
Tare (g):					268.98		Beaker Tare Wt	. (g):		392.32
					Ŀ	nitial Values					Final Values
Mold	& Wet	Soil (g):			5024.00		Mold & Wet So:	il (g):		5216.00
Mold	& Dry	Soil (g):			4986.87		Mold & Dry Soi	il (g):		4986.87
Tare o	f Mold	(g):				3363.00		Tare of Mold (g):		3363.00
Wet D	ensity	(pcf):				108.87)	Wet Density (po	cf):		121.46
Dry D	ensity	(pcf):				106.44		Dry Density (po	:f):		106.44
% Sati	uration	:				10.59%		% Saturation:			65.36%
% Mo	isture:					2.29%		% Moisture:			14.11%
	Date		Ti	me		Flow Vol	Flow	Head		T	k _v *
YY	MM	DD	S	ec.	Temp.	Readings	Vol.	Bottom	Top	h	cm/sec
2009	9	16		60	26	481.5	89.18	74.50	76.10	1.6	8.4E-02
2009	9	16		60	26	481.5	89.18	74.50	. 76.10	1.6	8.4E-02
2009	9	16		60	26	481.7	89.38	74.50	76.10	1.6	8.4E-02
2009	9	16		60	26	482.1	89.78	74.50	76.10	1.6	8.4E-02

k _{v =}	QL/Aht	cm./sec
------------------	--------	---------

- Q = 89.38 ml. (ave. measured flow volume)
- L = 3.313 in. (flow length)
- A = 12.57 sq. cm. (area of sample)
- h = 1.60 cm. (ave. head)
- t = 60.00 sec. (average run time)
- i = 0.19 (average gradient)

k_v = 8.4E-02 cm/sec (ave. k value)

-

12/13

「

26

a

A second

100 C

1

Contraction of the local division of the loc

Project Name: Project #:		Carrot	ant I to J P	RMT, Inc.				QC: HUW	
			ant Head Per	meability Test	(ASIM D24:	34)		QA: DAY	
		and Power							
	3081.95		IL Community Rd		SCS Description			Po	orly graded san
Sample Name:			ll, Sample #4			uon:			· S
Visual Descript:		graded sar	d		verage k _v =	the state of the state of		5.1E-02	cm./se
Sample Diameter (4.00					
Sample Height (in)	:			4.63					
Specific Gravity:				2.70					•
Fare & Wet Soil (g)				767.80					
Fare & Dry Soil (g)	:			748.70		Sample Type:			Remolde
Fare (g):				268.16		Beaker Tare Wt. (g):		392.3
				Initial Values					Final Value
Mold & Wet Soil (g	s):			5161.00		Mold & Wet Soil (g):		5302.0
Mold & Dry Soil (g	;):			5092.27		Mold & Dry Soil (g):		5092.2
Tare of Mold (g):				3363.00		Tare of Mold (g):			3363.0
Wet Density (pcf):				117.85		Wet Density (pcf)			127.0
Dry Density (pcf):				113.35		Dry Density (pcf):			113.3
% Saturation:				22.06%		% Saturation:			67.32
% Moisture:				3.97%		% Moisture:			12.139
Date	1.	Time	T	Flow Vol	Flow	Head		T	k _v *
YY MM DD		Sec.	Temp.	Readings	Vol.	Bottom	Тор	h	cm/sec
2009 10 14	ł	60	26	507.5	115.18	74.50	77.90) 3.4	5.1E-0
2009 10 14	ł	60	26	507.5	115.18	74.50	77.90) 3.4	5.1E-0
2009 10 14	-	60	26	507.5	115.18	74.50	77.90) 3.4	5.1E-02
2009 10 14	ł	60	26	507.5	115.18	74.50	77.90) 3.4	5.1E-0

.

A = 12.57 sq. cm. (area of sample)

- h = 3.40 cm. (ave. head)
- t = 60.00 sec. (average run time)
 - 0.40 (average gradient)

i =

k_v =

5.1E-02 cm/sec (ave. k value)

* k_v adjusted for temperature

13/13

	RMT, Inc. Constant Head Permeability Test (ASTM D2434)										
Project Name: Dairyland Power Project #: 3081.95 Sample Name: Select Granular Fill, Sample #6 Visual Descript: Poorly graded sand				USCS Description: USCS Classification: Average K _v =			^	QA: 41 Po 4.7E-02	orly graded sand SP cm./sec.		
Sample : Sample : Specific	Heigh	t (in):	i):			4.00 4.63 2.70	4				
Tare & V Tare & I Tare (g):	Wet So Dry So	oil (g):				3318.60 3216.50 429.85		Sample Type: Beaker Tare Wt. (′σ):		Remolded 392.32
						Initial Values		beater rate may			Final Values
Mold & Mold & Tare of I Wet Der Dry Der % Satura % Moist	Dry S Mold (nsity (nsity (ation: nure:	oil (g): (g): pcf):				5154.00 5090.70 3363.00 117.39 113:24 20.28% 3.66%	>	Mold & Wet Soil Mold & Dry Soil Tare of Mold (g): Wet Density (pcf) Dry Density (pcf) % Saturation: % Moisture:	(g):):	·	5279.00 5090.70 3363.00 125.59 113.24 60.33% 10.90%
	Date			Time		Flow Vol	Flow	Head			K _v *
YY I	MM	DD		Sec.	Temp.	Readings	Vol.	Bottom	Тор	h	cm/sec
2009	10	19		60	· 26	519.2	126.88	76.10	80.20	4.1	4.7E-02
2009	10	_ 19		60	26	519.5	127.18	76.10	80.20	4.1	4.7E-02
2009	10	19		60	26	519.8	127.48	76.10	80.20	4.1	4.7E-02
2009	10	19		60	26	520.5	128.18	76.10	80.20	4.1	4.7E-02

	K _v =	QL/Aht	cm./sec.	
	Q =	127.43	ml. (ave. measured flow volume)	
	L =	3.313	in. (flow length)	
	A =	12.57	sq. cm. (area of sample)	
	h =	4.10	cm. (ave. head)	
	t =	60.00	sec. (average run time)	
	i =	0.49	(average gradient)	
		4.7E-02	cm/sec (ave. k value)	- κ_v adjusted for temperature

Appendix K: Run-on and Run-off Control System Plan

Run-On and Run-Off Control System Plan

Alma Offsite Disposal Facility Phase IV Landfill Alma, Wisconsin

October 2016 Revised October 2021

Prepared For:

Dairyland Power Cooperative 3200 East Avenue South La Crosse, Wisconsin 54601

Prepared By:

TRC 708 Heartland Trail, Suite 3000 Madison, Wisconsin 53717

onathan di

onathan N. Hotstream, P.E., P.G. Senior Geological Engineer

old W. Mart

Todd Martin Principal Project Manager

TABLE OF CONTENTS

REVIS	SION HI	STORY	r	
1.0	INTRO	DUCTI	ON	1
	1.1	Purpos	e and Scope	. 1
2.0			G DESIGN CONCEPTS FOR CONTROLLING RUN-ON	
	AND F	RUN-OF	F	2
	2.1	Genera	al	.2
	2.2	Run-O	n Control System	.2
		2.2.1	General	. 2
		2.2.2	Control of Surrounding Run-On	. 3
		2.2.3	Diversion Berms	. 3
		2.2.4	Downslope Flumes	. 3
		2.2.5	Ditching	. 4
		2.2.6	Sedimentation Basins	. 4
		2.2.7	Culverts	. 4
		2.2.8	Temporary Surface Water Controls	. 4
	2.3	Run-Of	f Control System	.5
		2.3.1	General	. 5
		2.3.2	Leachate Collection System	. 5
		2.3.3	Leachate Removal and Transfer System	. 5
		2.3.4	Leachate Storage Capacity From a 25-Year 24-Hour Storm Event	. 6
		2.3.5	Conclusions	. 6
3.0	AMEN	IDMEN [.]	F OF THE PLAN AND NOTIFICATION	7
4.0	ENGI	NEER'S	CERTIFICATION	8

APPENDICES

- Appendix A: Surface Water Run-On Control System Calculations Appendix B: Surface Water Run-Off Control System Calculations

Appendix C: Relevant October 2002 POO Plan Sheets

Revision History

Revision Number	Revision Date	Section Revised	Summary of Revisions
1	10/6/2021	1.2, 2.2, 2.3, 3.0, App. B	5-year periodic revision, revised text and Appendix B

Dairyland Power Cooperative Run-On and Run-Off Control System Plan Alma Offsite Disposal Facility, Phase IV Landfill, Alma, Wisconsin Final October 2016 Revised October 2021

1.0 Introduction

1.1 Purpose and Scope

This Run-On and Run-Off Control System Plan (Plan) was prepared by TRC Environmental Corporation (TRC) on behalf of Dairyland Power Cooperative (DPC) for the Alma Offsite Disposal Facility, Phase IV Landfill (Landfill) where coal combustion residuals (CCR) are disposed. The approximately 32.1 acre Landfill is located in Sections 18 and 19, T21N, R12W, Town of Belvidere, Buffalo County, Wisconsin.

This Plan meets the run-on and run-off control system requirements of the United States Environmental Protection Agency's (USEPA) CCR Rule (Title 40 Code of Federal Regulations (CFR) part 257 Subpart D – "Standards for the Disposal of Coal Combustion Residuals in Landfills and Surface Impoundments"). This text and its accompanying appendices and plan sheets present the plans and specifications of the run-off and run-on control systems of the Landfill. The plan sheets and the text, with its appendices, complement each other and should be reviewed and used as one document.

2.0 Engineering Design Concepts for Controlling Run-On and Run-Off

2.1 General

The Landfill design has been developed to provide environmentally sound CCR disposal. The storm water run-on and run-off control systems for the Landfill have been designed and meet the requirements of 40 CFR 257.81.

The supporting calculations for the run-on and run-off design are referenced throughout the text and are included in the appendices. Details and drawings illustrating design layout and specifications are referenced as applicable and presented on the plan sheets and figures. The majority of the calculations provided in the appendices were prepared during the initial permitting of the Phase IV Disposal Area and included in the October 2000 Plan of Operation (POO) in accordance with Wisconsin Administrative Code, Chapters 500 through 520, and conversations with the Wisconsin Department of Natural Resources (WDNR). Plan sheets included in Appendix C are the relevant plan sheets from the October 2000 POO drawing plan set. For the purposes of this Plan, the terms surface water and storm water have been used interchangeably and reflect precipitation routed over land or temporarily stored to manage run-on and run-off. No streams, wetlands, or bodies of water are located in areas that would impact run-on and run-off at the Landfill.

2.2 Run-On Control System

2.2.1 General

The run-on control system for the Landfill consists of perimeter berms, diversion berms, downslope flumes, ditching, sedimentation basins, and culverts, designed and constructed to control surface water during both the operational and post-closure periods of the Landfill. The design of the surface water controls have been performed for the operational periods when the combination of surface conditions and contributing acreage would result in the greatest run-off volume, and for the post-closure period. Given the location of the site, the surface water management system was designed utilizing the 100-year, 24-hour storm event at the time of the design, which exceeds the current 25-year, 24-hour storm event required by 40 CFR 257.81(a)(1). Calculations for the surface water run-on control designs are included in Appendix A.

The surface water control system design has been performed to meet the following requirements:

- Run-off curve numbers (RCNs) used in the analysis provide a conservative analysis of the
 potential land uses of the upland areas. Upland areas within the watershed primarily
 include wooded areas and agricultural lands. The wooded areas are located on the
 steeper-sloped areas of the valley and are unlikely to be affected by future land uses.
 High RCNs for the agricultural lands were selected to represent a conservative fallow
 condition with exposed bare soil. The RCNs selected for these areas were 86.
- Surface water run-on controls have been designed to divert off-site surface water away from the active fill areas. On-site surface water is routed to sedimentation basins, except surface water in contact with active fill areas, which is treated as leachate.

Dairyland Power Cooperative Run-On and Run-Off Control System Plan Alma Offsite Disposal Facility, Phase IV Landfill, Alma, Wisconsin Final October 2016 Revised October 2021

2.2.2 Control of Surrounding Run-On

Surface water from areas west, north, and east of the Landfill currently drain to existing drainage channels that have formed in the valleys near the Landfill. These drainage channels converge at the location of the Landfill, are conveyed around the Landfill by perimeter diversion ditches, and continue to the south in a single drainage ditch. The main drainage ditch then routes the water to the south for approximately 1.5 miles before discharging into the Mississippi River (see Plan Sheet 5 in Appendix C).

Diversion ditches are designed to route off-site surface water around the Landfill in a controlled manner. These ditches are constructed in phases as the Landfill is developed.

During previous construction events, the perimeter drainage ditch along the eastern, western, and northern sides of the Landfill were constructed to route storm water from the east, west, and north around the Landfill. Cells 1, 2, and 3 of the Landfill have been constructed (see Plan Sheet 9 in Appendix C). A temporary drainage ditch/diversion berm was constructed on the northwestern side of the Landfill to route surface water from areas northwest of the Landfill around the Landfill. During Cell 4, Module B development, the remaining surface water controls will be completed (see Plan Sheets 11 and 12 in Appendix C).

Temporary and permanent ditching and diversion berms were designed and constructed to manage the peak flows associated with the 100-year, 24-hour storm event.

2.2.3 Diversion Berms

Diversion berms are designed along the final cover system to collect and transfer surface water to the receiving downslope flume or sedimentation basin (see Detail 2 on Plan Sheet 19 in Appendix C). These diversion berms concentrate and control flow, and discharge the non-contact surface water (water that has not come into contact with the CCR) from the Landfill away from the final cover. The swales created by the diversion berms are designed at 2 percent typical slopes along the flow lines. The locations of the surface water diversion berms are shown on Plan Sheet 12 in Appendix C.

Drainage areas for the Landfill are defined by the proposed surface water diversion berms at the site. Run-off computations were performed for the site with the proposed diversion berms inplace and are contained in Appendix A. Figure K-2 in Appendix A shows the post-closure drainage areas for the Landfill.

2.2.4 Downslope Flumes

Downslope flumes are included in the design to collect and transfer surface water from the diversion berms on the final cover to the sedimentation basins. Plan Sheet 12 shows the location of the downslope flumes. The downslope flumes have been designed as enclosed pipe flumes to limit erosion and to control the flow as it crosses roads. Downslope flume calculations are included in the culvert design subsection of Appendix A.

2.2.5 Ditching

Surface water ditching has been designed to minimize velocities and depths of flow. Velocities for the grass-lined ditching have been limited to 4 feet per second (fps). In areas where velocities exceed 4 fps, permanent erosion matting, or grouted riprap are used to limit erosion and reduce velocities. Ditch sizing calculations are contained in Appendix A. Designed ditch locations are shown on Figure K-3 in Appendix A. The ditching to route surface water around the Landfill and away from the active areas of the Landfill are designed at a minimum 2-foot depth as shown on Detail 8 on Plan Sheet 23 in Appendix A. Ditch sizing calculations for operational and post-closure conditions show that a minimum freeboard of 0.4 feet occurs as the worst case condition in the ditches for the 100-year 24-hour storm event. Therefore, the calculations indicate that run-on to the active areas of the Landfill should not occur for the 25-year 24-hour storm event as required by 40 CFR 257.81(a)(1).

2.2.6 Sedimentation Basins

Two permanent sedimentation basins are designed to capture and treat non-contact run-off from the Landfill final cover system. The locations of the permanent sedimentation basins are shown on Plan Sheet 5 in Appendix C. The basins have been designed with a minimum surface area that exceeds the surface area required to settle 0.015 mm particles. The sedimentation basins are designed to accommodate the surface water run-off from a 100-year, 24-hour storm event. The emergency spillways are designed to control the run-off from a storm greater than the 100-year, 24-hour storm event.

2.2.7 Culverts

Several culverts are designed to transport non-contact run-off from the Landfill final cover and surrounding areas. The locations of the permanent culverts are shown on Plan Sheet 12 in Appendix C. The culverts have been designed to allow the peak run-off associated with a 100-year, 24-hour storm to pass through it without creating surface water breaching (i.e., berm overflow and run-on into active areas of the Landfill) or excessive backwater levels. Culvert sizing was performed using design charts developed by the U.S. Department of Transportation Federal Highway Administration. Culvert sizing calculations are provided in Appendix A.

2.2.8 Temporary Surface Water Controls

In addition to the permanent surface water management features discussed above, temporary surface water controls are also implemented during operation of the Landfill to control surface water from entering the active disposal area and to limit erosion of the final cover. These temporary control features include diversion berms, downslope discharge structure, and culverts. Temporary diversion berms will be constructed as needed along the transition from an active area to an area that has reached final grade, or that has intermediate cover, in order to control surface water from entering the active area. Temporary downslope discharge structures will be used to route non-contact run-off from diversion berms (either temporary or permanent) to the perimeter ditches.

2.3 Run-Off Control System

2.3.1 General

The leachate collection and handling system in conjunction with cell delineation berms (see detail 5 on Plan Sheet 17 in Appendix C) and perimeter berms comprise the control system for preventing contact surface water run-off from the active portions of the Landfill. Contact surface water is managed as leachate. The leachate collection system for the Landfill has been designed to provide effective drainage, collection, and removal of leachate from the Landfill.

2.3.2 Leachate Collection System

The primary components of the leachate collection system consist of a drainage layer, leachate collection and transfer piping, cleanouts, manholes, a storage tank, and a load-out facility. The leachate collection system layout is shown on Plan Sheet 5 in Appendix C. The drainage layer is placed over the geomembrane on the base and sidewalls. The drainage layer promotes the efficient transmission of leachate to the leachate collection trenches and pipes. The drainage layer is a minimum of 12 inches thick and has a minimum hydraulic conductivity of 1.0×10^{-2} centimeters per second (cm/s).

The leachate collection piping is placed in vee-shaped trenches and consists of 6-inch–diameter perforated high density polyethylene (HDPE) pipe. Pipe bedding material is placed around the perforated pipe and mounded as shown on Plan Sheet 17 in Appendix C.

Leachate collection pipes in each cell are placed parallel to each other in valleys over the herringbone design across the base. These lines drain at a 4 to 6 percent slope to the leachate removal and transfer system.

Temporary cell delineation berms are used along the cell boundaries to control surface water runoff from exiting the active areas of the Landfill. Refer to Detail 5 on Plan Sheet 17 for further details on the temporary cell delineation berm design.

2.3.3 Leachate Removal and Transfer System

The perforated leachate collection piping will transition to 6-inch–diameter nonperforated leachate transfer piping within the Landfill just prior to where the transfer piping penetrates the liner system at the southern toe-of-slope of each cell. The horizontal pipe penetration has been designed to prevent leachate from leaving the Landfill liner system through the liner penetration.

Outside of the limits of CCR, concrete manholes provide a location for transfer piping to manifold into a single perimeter transfer pipe around the southern end of the Landfill, and to provide a location for cleanout access piping.

The combined transfer piping then extends to the leachate storage tank located near the ash processing facility. Leachate collected in the tank is pumped into tanker trucks and transported to a nearby wastewater treatment plan for treatment which complies with 40 CFR 257.81(b). Plan Sheet 5 illustrates the location of the transfer piping, manholes, and the storage tank.

2.3.4 Leachate Storage Capacity From a 25-Year 24-Hour Storm Event

The proposed phasing plans and existing conditions were reviewed to determine the worst-case scenario for leachate generation. This worst-case scenario was used to show that run-off from the active area of the Landfill would not occur from a 25-year 24-hour storm event. Calculations contained in Appendix B show that there is approximately 14,700 cubic feet of leachate storage capacity remaining in the leachate collection system after a 25-year 24-hour storm event. Therefore, sufficient infrastructure is provided to prevent run-off from the active area of the Landfill as required by 40 CFR 257.81(a)(2).

2.3.5 Conclusions

This Plan has demonstrated that the Landfill has a run-on control system and a run-off control system sufficient to prevent flow onto or off of the active portion during a 24-hour 25-year storm event. The Landfill is in compliance with the requirements of 40 CFR 257.81.

3.0 Amendment of the Plan and Notification

This Plan was been completed in compliance with the requirements set forth in 40 CFR 257.81. This document has been placed in the operating record, posted to the publicly accessible website, and government notifications have been provided.

A Run-On and Run-Off Control System Plan must be prepared every 5 years from the completion date of this Plan.

The Plan must be amended whenever the periodic review period is reached or if changes in site conditions, either intentionally or unintentionally, occur that will sustainably impact the current written plan in effect.

4.0 Engineer's Certification

Pursuant to 40 CFR 257.81 and by means of this certification I attest that:

- (i) I am familiar with the requirements of the federal CCR rule (40 CFR 257);
- (ii) this Run-On and Run-Off Control System Plan has been prepared in accordance with good engineering practice; and
- (iii) this Run-On and Run-Off Control System Plan meets the requirements of 40 CFR 257.81(c).

For the purpose of this document, "certify" and "certification" shall be interpreted and construed to be a "statement of professional opinion." The certification is understood and intended to be an expression of my professional opinion as a Wisconsin licensed professional engineer, based upon knowledge, information, and belief. The statement(s) of professional opinion are not and shall not be interpreted or construed to be a guarantee or a warranty of the analysis herein.

Signature of Registered Professional Engineer

Registration No. <u>42745-6</u>

State: Wisconsin

Appendix A: Surface Water Run-On Control System Calculations

- Note: For clarification purposes, these run-on calculations estimate "run-off" quantities from areas in and surrounding the Landfill that develop non-contact surface water that is managed to prevent run-on to the active Landfill areas.
- Surface Water Run-off Calculations
 - Purpose/Methodology/Assumptions/Results/References
 - Post-closure Run-off Calculations
 - Operational Run-off Calculations
 - Reference Information
- Diversion Berm, Perimeter Ditch, and Spillway Design Calculations
 - Purpose/Methodology/Assumptions/Results/References
 - Calculations Post-closure Landfill Conditions
 - Calculations Operational Landfill Conditions
 - Reference Information
- Culvert/Downslope Flume Design Calculations
 - Purpose/Methodology/Assumptions/Results/References
 - Calculations Post-closure Landfill Conditions
 - Calculations Temporary Culverts, Operational Conditions
- Vegetation Information

Surface Water Run-off Calculations

Dairyland Power Cooperative Run-On and Run-Off Control System Plan Alma Offsite Disposal Facility, Phase IV Landfill, Alma, Wisconsin Final October 2016 Revised October 2021

Purpose/Methodology/Assumptions/Results/References

Dairyland Power Cooperative Run-On and Run-Off Control System Plan Alma Offsite Disposal Facility, Phase IV Landfill, Alma, Wisconsin

COMPUTATION SHEET

744 Heartland Trail (53717-8923) I	P. O. Box 8	8923 (53708	3-8923)	Madison, WI	(608) 831-44	44 FAX	(608) 831-3334	VOICE: (608) 831-1989
PROJECT/PROPOSAL NAME		PREPARE	D	C	TECKED		PROJECT/PR	OPOSAL NO.
Dairyland Power Cooperativ	ve	By: BJK	Dat 5/9			ate: /97		3081.40

SURFACE WATER RUNOFF CALCULATIONS

Purpose

The purpose of the surface water runoff calculations was to estimate the amount of surface water runoff and the peak discharge for the 25-year, 24-hour and 100-year, 24-hour storms at the proposed Dairyland Power Landfill. Calculations were performed for the pre- and post-development conditions. Calculations were also performed for operational conditions for the 25-year, 24-hour storm. Once determined, the surface water runoff quantities were compared to determine the effect of the proposed landfill on the existing drainage patterns. The runoff calculations were also used to size diversion ditches, sedimentation basins, culverts, and downslope flumes.

Methodologies

Surface water runoff calculations consist of delineating drainage areas (watersheds), as shown on the attached figures, estimating runoff characteristics, and calculating the peak and total runoff rate and volume for each drainage area. The methods for computing surface water runoff were based on the methodologies presented in the Technical Release No. 55 - "Urban Hydrology for Small Watersheds" by the United States Soil Conservation Service.

The calculations were performed using the QUICK TR-55 computer program developed by Haestad Methods (Haestad 1989). The program incorporates rainfall quantities, storm distributions, surface runoff characteristics, drainage areas, times of concentration, and travel times to generate a hydrograph from which the volume of surface water runoff and the peak discharge are obtained.

It is noted that the storm water control structures have been designed using a 100-year, 24-hour storm event and a TR-55 Type II storm distribution to determine peak flow rates. Rainfall distributions for the Type II storm event include "nested" higher intensity storm events within those needed for longer durations at the same probability. The resulting peak flows using this design method meet or exceed the peak flows obtained using a 25-year, time of concentration storm event (required by NR 504.09).

COMPUTATION SHEET

PROJECT/PROPOSAL NAME	PREPARED		CHECKED		PROJECT/PROPOSAL NO.	
Dairyland Power Cooperative	By: BJK	Date: 5/97	By: BLP	Date: 6/97	3081.40	

Assumptions

The following assumptions were made in developing the hydrographs (Note: The figures and values referenced in these assumptions have been included in the references portion of this appendix):

- A 2-year, 24-hour storm event in the vicinity of the landfill is 2.8 inches based on rainfall maps prepared by the U.S. Weather Bureau.
- A 25-year, 24-hour storm event in the vicinity of the landfill equates to 4.9 inches based on rainfall maps prepared by the U.S. Weather Bureau.
- A 100-year, 24-hour storm event in the vicinity of the landfill equates to 6.1 inches based on rainfall maps prepared by the U.S. Weather Bureau.
- A Type II rainfall distribution was used, based on SCS storm distribution maps provided in the TR-55 manual.
- Cover types for the pre-development conditions, from which runoff curve numbers were determined, were based on USGS topographic maps and an aerial photograph.
- For the post-development landfill conditions, a runoff curve number of 74 was assumed, based on values provided in the TR-55 manual.
- Based on the USDA-SCS General Soil Map for Buffalo County, Wisconsin, the primary soil formations present include the Dubuque silt loam and the Fayette silt loam. These soils are a Type B soil, based on tables provided in the TR-55 manual.
- Runoff curve numbers for the non-landfill areas ranged from 55 to 86, based on values
 provided in the TR-55 manual. Refer to the attached calculations for the breakdown and
 description of each of the curve numbers used for the various drainage areas.

Results

The table below summarizes the results of the surface water runoff analyses and provides a comparison of the pre- and post-development conditions:

	TOTAL RUNOFF (acre-ft)			PEAK	PEAK DISCHARGE (cf		
STORM	PRE-	POST-	Δ	PRE-	POST-	Δ	
25-year	153	148	(5)	1,170	1,028	(142)	
100-year	232	225	(7)	1,895	1,622	(273)	

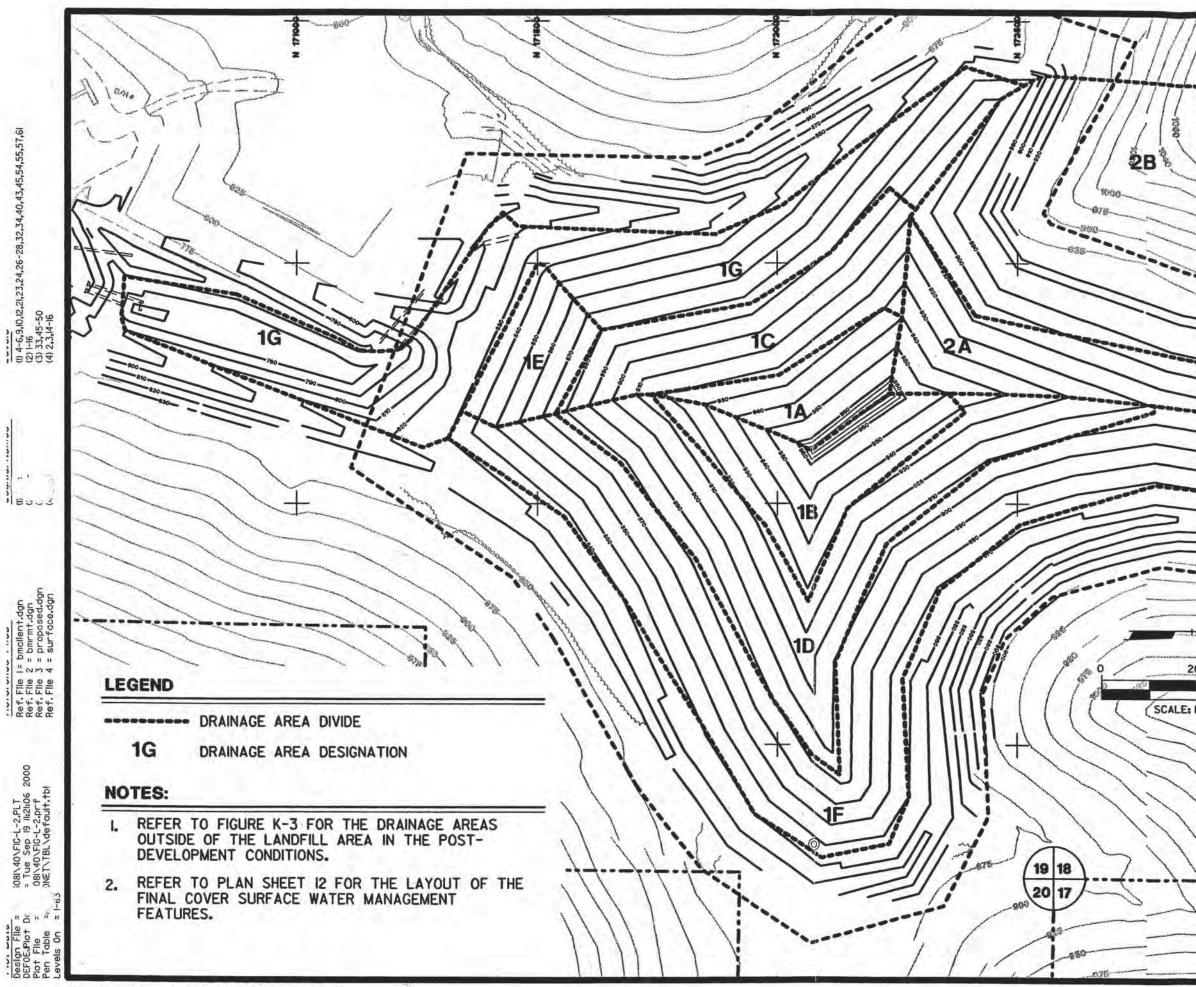
Based on the results of the surface water runoff calculations, the proposed landfill is not anticipated to have an adverse impact on the existing surface water at the site. Total runoff volumes to the existing drainageways are not anticipated to change in the pre- and postdevelopment conditions. Peak runoff volumes to the existing drainageways for post-

COMPUTATION SHEET

744 Heartland Trail (53717-8923) P.	O. Box 8923 (53708	8-8923)	Madison, WI	(608) 831-4444		VOICE: (608) 831-1989	
PROJECT/PROPOSAL NAME	PREPARI	PREPARED		ECKED	PROJECT/PI	ROPOSAL NO.	
Dairyland Power Cooperativ	e BJK	Date: 5/9		P Date: 6/97		3081.40	

CITTY

development conditions are slightly lower than the pre-development conditions. This is primarily due to the use of sedimentation basins to dissipate peak flows from the landfill to the surrounding areas. The reduced peak flows will result in reduced sediment transport from the site.


The results of these surface water runoff calculations have also been used in the attached diversion berm, perimeter ditch, spillway, and sedimentation basin calculations. These structures have been designed to handle the peak runoff from the 100-year, 24-hour storm event.

References

- US Department of Agriculture, Soil Conservation Service. Urban Hydrology for Small Watersheds. Technical Release No. 55. 2nd Edition. June 1986.
- US Department of Agriculture, Soil Conservation Service. 1986. Engineering Field Manual for Conservation Practices. November 1986.
- Haestad Methods. Pond Pack, QUICK TR-55. Hydrology for Small Watersheds. December 1989.

Post-closure Run-off Calculations

E 1477000 E 1477500 200 SCALE: 1=200-1000 1080 E 1478000 POST-DEVELOPMENT SURFACE WATER MANAGEMENT FEATURES -LANDFILL AREAS DAIRYLAND POWER COOPERATIVE JCD Dwn. By: Approved By: KIM Date: SEPT. 2000 Proj." 3081.40 File ": FIG-L-2.PLT FIGURE K-2

Quick TR-55 Ver.5.46 S/N: Executed: 09:52:46 04-09-1997

Dairyland Power Coop. Feasibility Report Landfill Runoff BJK 3/97

RUNOFF CURVE NUMBER SUMMARY

Subarea	Area	CN
Description	(acres)	(weighted)

14	1.40	74
18	2.20	74
10	2.90	74
1D	5.30	74
1E	1.20	74
1F	9.50	74
1G	7.40	84

÷

Quick TR-55 Ver.5.46 S/N: Executed: 09:52:46 04-09-1997

6/13/97

Dairyland Power Coop. Feasibility Report Landfill Runoff BJK 3/97

RUNOFF CURVE NUMBER DATA

Composite Area: 1A

SURFACE DESCRIPTION	AREA (acres)	CN	
Landfill Cover	1.40	74	
COMPOSITE AREA>	1.40	74.0	(74)

Composite Area: 1B

	AREA	CN	
SURFACE DESCRIPTION	(acres)		
Landfill Cover	2.20	74	
COMPOSITE AREA>	2.20	74.0	(74)

Composite Area: 1C

SURFACE DESCRIPTION	AREA (acres)	CN	
Landfill Cover	2.90	74 -	
COMPOSITE AREA>	2.90	74.0	(74)

Quick TR-55 Ver.5.46 S/N: Executed: 09:52:46 04-09-1997

Composite Area: 1D

AREA CN SURFACE DESCRIPTION (acres) Landfill Cover 5.30 74 COMPOSITE AREA ---> 5.30 74.0 (74)

Composite Area: 1E

SURFACE DESCRIPTION	AREA (acres)	CN	
Landfill Cover	1.20	74	/
COMPOSITE AREA>	1.20	74.0	(74)

Composite Area: 1F

SURFACE DESCRIPTION	AREA (acres)	CN	
Landfill Cover	9.50	74	1
COMPOSITE AREA>	9.50	74.0	(74)

Composite Area: 1G

	AREA	CN
SURFACE DESCRIPTION	(acres)	
Landfill Cover	4.40	74 -
Sedimentation Basin	3.00	98 -

COMPOSITE AREA ---> 7.40 83.7 (84)

Quick TR-55 Ver.5.46 S/N: Executed: 09:53:01 04-09-1997

> Dairyland Power Coop. Feasibility Report Landfill Runoff BJK 3/97

RUNOFF CURVE NUMBER SUMMARY

Subarea	Area	CN
Description	(acres)	(weighted)
2A	2.70	74
2B	21.50	69

Quick TR-55 Ver.5.46 S/N: Executed: 09:53:01 04-09-1997

1

Dairyland Power Coop. Feasibility Report Landfill Runoff BJK 3/97

RUNOFF CURVE NUMBER DATA

Composite Area: 2A

SURFACE DESCRIPTION	AREA (acres)	CN	
Landfill Cover	2.70	74	
COMPOSITE AREA>	2.70	74.0	(74)
111111111111111111111111111111111111111			

Composite Area: 28

Landfill Cover 2.70 7	74
Graded/Grassed Area 2.00 6	51 -
Woods/Brush 15.80 6	57 -
Sedimentation Basin 1.00 9	98 -
COMPOSITE AREA> 21.50 6	58.8 (69)

SUMMARY SHEET FOR Tc or Tt COMPUTATIONS (Solved for Time using TR-55 Methods)

> Dairyland Power Coop. Feasibility Report Landfill Final Cover BJK 3/97

Subarea descr.	Tc or Tt	Time (hrs)

14	Tc	0.18
18	Tc	0.23
10	Tc	0.23
10	Tc	0.35
1E	Tc	0.18
1F	Tc	0.45
1G	Tc	0.22

Quick TR-55 Ver.5.46 S/N: Executed: 09:48:41 04-09-1997 B:COVER1.TCT

1

)

)

6/13/97

Dairyland Power Coop. Feasibility Report Landfill Final Cover BJK 3/97

TC COMPUTATIONS FOR: 1A

SHEET FLOW (Applicable to Tc only)					
Segment ID	-	1			
Surface description	Den	e Grass			
Manning's roughness coeff., n		0.2400	1		
Flow length, L (total < or = 300)		150.0			
Two-yr 24-hr rainfall, P2	in				
Land slope, s					
Cand stope, s	ft/ft	0.2500			
.007 * (n*L)	1.11				202
T =	hrs	0.13			0.13
0.5 0.4					
P2 * s					
SHALLOW CONCENTRATED FLOW					
Segment ID		2			
Surface (paved or unpaved)?		Unpaved			
Flow length, L	ft	420.0			
Watercourse slope, s	ft/ft	0.0200	1		
0.5					
Avg.V = Csf * (s)	ft/s	2.2818			
where: Unpaved Csf = 16.1345					
Paved Csf = 20.3282			- 2		
T = L / (3600*V)	hrs	0.05		•	0.05
CHANNEL FLOW					
Segment ID		1.0.00			
Cross Sectional Flow Area, a	sq.ft	0.00			
Wetted perimeter, Pw	ft	0.00			
Hydraulic radius, r = a/Pw	ft	0.000			
Channel slope, s	ft/ft	0.0000			
Manning's roughness-coeff., n		0.0000			
2/3 1/2					
1.49 * r * s					
V =	ft/s	0.0000			
n	1.42				
Flow Length, L					
the congress to	ft	0			
T = L / (3600*V)	hrs	0.00			0.00
		TOTAL T	IME (hrs	0	0.18

Feasibility Report Landfill Final Cover BJK 3/97 TC COMPUTATIONS FOR: 18 SHEET FLOW (Applicable to Tc only) Segment ID 1 Surface description Dense Grass Manning's roughness coeff., n 0.2400 125.0 / Flow length, L (total < or = 300) ft Two-yr 24-hr rainfall, P2 2.800 in 0.2500 -Land slope, s ft/ft 0.8 .007 * (n*L) T = ---hrs 0.11 8 0.11 0.5 0.4 P2 * s SHALLOW CONCENTRATED FLOW Segment ID 2 Surface (paved or unpaved)? Unpaved Flow Length, L 960.0 / ft Watercourse slope, s ft/ft 0.0200 / 0.5 Avg.V = Csf * (s) 2.2818 ft/s where: Unpaved Csf = 16.1345 Paved Csf = 20.3282 T = L / (3600*V)0.12 hrs 0.12 CHANNEL FLOW Segment ID Cross Sectional Flow Area, a 0.00 sq.ft Wetted perimeter, Pw ft 0.00 Hydraulic radius, r = a/Pw ft 0.000 Channel slope, s ft/ft 0.0000 Manning's roughness coeff., n 0.0000 2/3 1/2 1.49 * Π. * 5 V = -----0.0000 ft/s n Flow Length, L ft 0 T = L / (3600*V) hrs 0.00 0.00

TOTAL TIME (hrs) 0.23

Quick TR-55 Ver.5.46 S/N: a:COVER1.TCT Executed: 09:48:41 04-09-1997

Dairyland Power Coop.

Quick TR-55 Ver.5.46 S/N: Executed: 09:48:41 04-09-1997 a:COVER1.TCT

)

1026

Dairyland Power Coop. Feasibility Report Landfill Final Cover BJK 3/97

1.1

Te COMPUTATIONS FOR: 1C

SHEET FLOW (Applicable to Tc only)			
Segment ID		1	
Surface description	Den	e Grass	
Manning's roughness coeff., n		0.2400	
Flow length, L (total < or = 300)) ft	165.0 /	
Two-yr 24-hr rainfall, P2	in	2.800	
Land slope, s	ft/ft	0.2500 -	
0.8			
.007 * (n*L)			
T =	hrs	0.14	= 0.14
0.5 0.4			
P2 * s			
SHALLOW CONCENTRATED FLOW			
Segment ID		2	
Surface (paved or unpaved)?		Unpaved	
Flow length, L	ft	720.0 /	
Watercourse slope, s	ft/ft	0.0200 /	
		0.0200 /	
0.5			
Avg.V = Csf * (s)	ft/s	2.2818	
where: Unpaved Csf = 16.1345			
Paved Csf = 20.3282			
T = L / (3600*V)	hrs	0.09	= 0.09
CHANNEL FLOW			
Segment ID			
Cross Sectional Flow Area, a	sq.ft	0.00	
Wetted perimeter, Pw	ft	0.00	
Hydraulic radius, r = a/Pw	ft	0.000	
Channel slope, s	ft/ft	0.0000	
Manning's roughness coeff., n		0.0000	
2/3 1/2		-	
1.49 * r * s			
V =	ft/s	0.0000	
n			
FINE DECEMBER 1	100		
Flow length, L	ft	0	
T = L / (3600*V)	hrs	0.00	= 0.00
	0.00	TOTAL TIME (hrs) 0.23

Quick TR-55 Ver.5.46 S/N: Executed: 08:55:25 06-18-1997 a:COVER1.TCT

> Dairyland Power Coop. Feasibility Report Landfill Final Cover BJK 3/97

TC COMPUTATIONS FOR: 1D

SHEET FLOW (Applicable to Tc only) Segment ID Surface description Dense Grass Manning's roughness coeff., n 0.2400 160.0 / Flow length, L (total < or = 300) ft Two-yr 24-hr rainfall, P2 in 2.800 Land slope, s ft/ft 0.2500 / 0.8 .007 * (n*L) T = 0.13 hrs = 0.13 0.4 0.5 P2 * s SHALLOW CONCENTRATED FLOW Segment ID 2 Surface (paved or unpaved)? Unpeved Flow Length, L 1770.0 ft Watercourse slope, s 0.0200 / ft/ft 0.5 Avg.V = Csf * (s) 2.2818 ft/s where: Unpaved Csf = 16.1345 Paved Csf = 20.3282 T = L / (3600*V) 0.22 hrs 0.22 CHANNEL FLOW Segment ID Cross Sectional Flow Area, a sq.ft 0.00 Wetted perimeter, Pw 0.00 ft Hydraulic radius, r = a/Pw 0.000 ft Channel slope, s 0.0000 ft/ft Manning's roughness coeff., n 0.0000 2/3 1/2 1.49 * r . . 0.0000 ft/s n Flow length, L ft 0 T = L / (3600*V) 0.00 hrs 0.00 TOTAL TIME (hrs) 0.35

B2G 6/13/97 Quick TR-55 Ver.5.46 S/N: Executed: 08:55:25 06-18-1997 a:COVER1.TCT

Dairyland Power Coop. Feasibility Report Landfill Final Cover BJK 3/97

10000 - 113/97

- K

TC COMPUTATIONS FOR: 1E

SHEET FLOW (Applicable to Tc only)					
Segment ID					
Surface description	Den	se Grass			
Manning's roughness coeff., n		0.2400			
Flow length, L (total < or = 300) ft		1.12		
Two-yr 24-hr rainfall, P2	in	C			
Land slope, s	ft/ft		1		
0.8					
.007 * (n*L)					
T =	hrs	0.14			0.14
0.5 0.4					
P2 * s					
SHALLOW CONCENTRATED FLOW					
Segment ID		2			
Surface (paved or unpaved)?		Unpeved			
Flow length, L	ft	250.0			
Watercourse slope, s	ft/ft	0.0200			
0.5					
Avg.V = Csf * (s)	ft/s	2.2818			
where: Unpaved Csf = 16.1345					
Paved Csf = 20.3282					
T = L / (3600*V)	hrs	0.03			0.03
CHANNEL FLOW			· 4.		
Segment ID					
Cross Sectional Flow Area, a		0.00			
Wetted perimeter, Pw	sq.ft	0.00			
Hydraulic radius, r = e/Pw	ft				
Channel slope, s	ft				
Manning's roughness coeff., n	ft/ft	0.0000			
Haranny's roughness coerr., n		0.0000			
2/3 1/2					
1.49 * r * e					
V a	44.10	0.0000			
94 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ft/s	0.0000			
Flow Length, L	ft	0			

4

Quick TR-55 Ver.5.46 S/N: Executed: 09:48:41 04-09-1997 a:COVER1.TCT

> Dairyland Power Coop, Feasibility Report Landfill Final Cover BJK 3/97

6/13/97

1.14

TC COMPUTATIONS FOR: 1F

SHEET FLOW (Applicable to Tc only)						
Segment ID		1				
Surface description	Dens	e Grass				
Manning's roughness coeff., n		0.2400				
Flow length, L (total < or = 300)	ft	150.0	-			
Two-yr 24-hr rainfall, P2	in	2.800				
Land slope, s	ft/ft	0.2500	1			
0.8						
.007 * (n*L)						
T =	hrs	0.13			0.13	
0.5 0.4						
P2 * s						
SHALLOW CONCENTRATED FLOW						
Segment ID		2				
Surface (paved or unpaved)?		Unpaved				
Flow length, L	ft	2650.0	1			
Watercourse slope, s	ft/ft	0.0200	1			
		010200				
0.5						
Avg.V = Csf * (s)	ft/s	2.2818				
where: Unpaved Csf = 16.1345						
Paved Csf = 20.3282						
T = L / (3600*V)	hrs	0.32		14	0.32	
				1	0.32	
CHANNEL FLOW						
Segment ID						
		0.00				
Wetted perimeter, Pw	sq.ft ft	0.00				
Hydraulic radius, r = a/Pw		0.00				
Channel slope, s	ft ft/ft	0.000				
Manning's roughness coeff., n	Tt/Tt	0.0000				
Horanny a roughness coerra, n		0.0000				
2/3 1/2						
1.49 * r * s ·						
V =	ft/s	0.0000				
n		100 March 10				

Flow length, L ft 0 T = L / (3600*V) hrs 0.00 = 0.00

TOTAL TIME (hrs) 0.45

Quick TR-55 Ver.5.46 S/N: Executed: 09:48:41 04-09-1997 a:COVER1.TCT

Dairyland Power Coop. Feasibility Report Landfill Final Cover BJK 3/97

TE COMPUTATIONS FOR: 16

SHEET FLOW (Applicable to Tc only)					
Segment ID		1			
Surface description	Dens	e Grass			
Manning's roughness coeff., n		0.2400			
Flow length, L (total < or = 300)	ft	170.0	-		
Two-yr 24-hr rainfall, P2	in	2.800			
Land slope, s	ft/ft	0.2500	1		
0.8					
.007 * (n*L)					
Τ =	hrs	0.14			0.1
0.5 0.4					
P2 * s					
SHALLOW CONCENTRATED FLOW					
Segment ID		2	3		
Surface (paved or unpaved)?		Unpaved	Unpaved		
Flow length, L	ft	780.0	370.0	-	
Watercourse slope, s	ft/ft	0.0600	0.0800		
0.5					
Avg.V = Csf * (s)	64.1-	3.9521	4.5635		
where: Unpaved Csf = 16.1345	ft/s	3.9321	4.2035		
Paved Csf = 20.3282					
T = L / (3600*V)	hrs	0.05	+ 0.02	-	0.08
CHANNEL FLOW					
Segment ID					
Cross Sectional Flow Area, a	sq.ft	0.00			
Wetted perimeter, Pw	ft	0.00			
Hydraulic radius, r = a/Pw	ft	0.000			
Channel slope, s	ft/ft	0.0000			
Manning's roughness coeff., n		0.0000			
2/3 1/2					
1.49 * r * s					
V =	ft/s	0.0000			
n					
Flow length, L	ft	0			
riow tength, L					

1828 6/13/97 Quick TR-55 Ver.5.46 S/N: Executed: 08:57:44 06-18-1997 s:COVER2.TCT

> SUMMARY SHEET FOR Tc or Tt COMPUTATIONS (Solved for Time using TR-55 Methods)

> > Dairyland Power Coop. Feasibility Report Landfill Final Cover BJK 3/97

Subarea descr.	Tc or Tt	Time (hrs)
24	Tc	0.28
28	Tc	0.18

1.1

Quick TR-55 Ver.5.46 S/N: Executed: 08:57:44 06-18-1997 a:COVER2.TCT

> Dairyland Power Coop. Feasibility Report Landfill Final Cover BJK 3/97

> > .

6/13/97

TC COMPUTATIONS FOR: 2A

SHEET FLOW (Applicable to Tc only)					
Segment ID		1			
Surface description	Dens	se Grass			
Manning's roughness coeff., n		0.2400			
Flow length, L (total < or = 300)	ft	200.0			
Two-yr 24-hr rainfall, P2	in				
Land slope, s	ft/ft	0.2500	1		
0.8					
.007 * (n*L)	1.45				
T =	hrs	0.16			0.16
0.5 0.4					
P2 * s					
SHALLOW CONCENTRATED FLOW					
Segment ID		2			
Surface (paved or unpaved)?		Unpaved			
Flow Length, L	ft	0.000	1		
Watercourse slope, s	ft/ft	1000000	1		
0.5					
Avg.V = Csf * (s)	ft/s	2.2818			
where: Unpaved Caf = 16.1345					
Paved Csf = 20.3282					
T = L / (3600*V)	hrs	0.11		÷	0.11
CHANNEL FLOW					
Segment ID					
Cross Sectional Flow Area, a	sq.ft	0.00			
Wetted perimeter, Pw	ft	0.00			
Hydraulic radius, r = a/Pw	ft	0.000			
Channel slope, s	ft/ft	0.0000			
Manning's roughness coeff., n		0.0000			
2/3 1/2					
1.49 * 5 * 8					
V =	ft/s	0.0000			
n	1.7.8	0.0000			
Flow length, L	ft	0			
T = L / (3600*V)	hrs	0.00			0.00
211 FCG 11 F00 11 F0 11 F0 11 F0 11 F0 11 F0 10 F0			INE (hrs)	2557	0.28
		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			

Quick TR-55 Ver.5.46 S/N: Executed: 08:57:44 06-18-1997 a:COVER2.TCT Dairyland Power Coop. Feasibility Report Landfill Final Cover BJK 3/97 Te COMPUTATIONS FOR: 28 SHEET FLOW (Applicable to Tc only) Segment ID 1 Surface description Brush Manning's roughness coeff., n 0.1300 Flow length, L (total < or = 300) ft 300.0 Two-yr 24-hr rainfall, P2 2.800 in Land slope, s ft/ft 0.2000 0.8 .007 * (n*L)

T = ______ hrs 0.15 = 0.15 0.5 0.4 p2 * s

Segment ID		2	3
Surface (paved or unpaved)?		Unpaved	Unpaved
Flow length, L	ft	560.0	300.0
Watercourse slope, s	ft/ft	0.4400	0.0800
0.5			
Avg.V = Csf * (s)	ft/s	\$10.7024	4.5635
where: Unpaved Csf = 16.1345			
. Paved Csf = 20.3282			

hrs

0.01

0.02

= 0.03

0.00

		ELOU
LIAN	INEL	FLOW

T = L / (3600*V)

Segment ID			
Cross Sectional Flow Area, a	sq.ft	0.00	
Wetted perimeter, Pw	ft	0.00	
Hydraulic radius, r = a/Pw	ft	0.000	
Channel slope, s	ft/ft	0.0000	
Manning's roughness coeff., n		0.0000	
2/3 1/2 1.49 * r * s			
v =	ft/s	0.0000	
Flow length, L	ft	o	
T = L / (3600*V)	hrs	0.00	-

TOTAL TIME (hrs) 0.18

Page 1 Return Frequency: 25 years

TR-55 TABULAR HYDROGRAPH METHOD Type II. Distribution (24 hr. Duration Storm)

Executed: 09-18-2000 12:51:33 Watershed file: --> P:\DATA\PROJECTS\3081\40\SW\COVER1 .MOP Hydrograph file: --> P:\DATA\PROJECTS\3081\40\SW\COVER125.HYD

> Dairyland Power Coop. Fesibility Study Landfill Cover BJK 3/97

>>>> Input Parameters Used to Compute Hydrograph <<<<

Subarea Description	AREA (acres)	CN	Tc (hrs)	* Tt (hrs)	Precip. (in)	Rund Rund			/p /used
1A	1.40	74.0	0.20	0.00	4.90	2.2	28 1	1.14	.14
1B	2.20	74.0	0.20	0.00	4.90	2.2	28 1	.14	.14
10	2.90	74.0	0.20	0.00	4.90	2.2	28 1	.14	.14
1D	5.30	74.0	0.40	0.00	4.90	2.2	28 1	.14	.14
1E	1.20	74.0	0.20	0.00	4.90	2.2	28 1	. 14	.14
1F	9.50	74.0	0.50	0.00	4.90	2.2	28 1	.14	.14
1G	7.40	84.0	0.20	0.00	4.90	3.1	18 1	.08	.10

* Travel time from subarea outfall to composite watershed outfall point.

I -- Subarea where user specified interpolation between Ia/p tables.

Total area = 29.90 acres or 0.04672 sq.mi Peak discharge = 67 cfs

WARNING: Drainage areas of two or more subareas differ by a factor of 5 or greater.

Т	otal Runoff =
22.5 a	c (2.25") + 7.4Ac (3.18m)
	12

6.2 ac - FT

	Input	Values	Rounded	Values	la/p	
Subarea	Tc	* Tt	Tc	* Tt	Interpolated	I Ia/p
Description	(hr)	(hr)	(hr)	(hr)	(Yes/No)	Messages
A	0.18	0.00	0.20	0.00	Yes	
B	0.23	0.00	0.20	0.00	Yes	
C	0.23	0.00	0.20	0.00	Yes	
D	0.35	0.00	0.40	0.00	Yes	
E	0.18	0.00	0.20	0.00	Yes	**
F	0.45	0.00	0.50	0.00	Yes	
G	0.22	0.00	0.20	0.00	No	Computed Ia/p < .

* Travel time from subarea outfall to composite watershed outfall point.

Return Frequency: 25 years

TR-55 TABULAR HYDROGRAPH METHOD Type II. Distribution (24 hr. Duration Storm)

Executed: 09-18-2000 12:51:33 Watershed file: --> P:\DATA\PROJECTS\3081\40\SW\COVER1 .MOP Hydrograph file: --> P:\DATA\PROJECTS\3081\40\SW\COVER125.HYD

> Dairyland Power Coop. Fesibility Study Landfill Cover BJK 3/97

>>>> Summary of Subarea Times to Peak <<<<

	Peak Discharge at	Time to Peak at	
	Composite Outfall	Composite Outfall	
Subarea	(cfs)	(hrs)	
***********	**********		
1A	4	12.2	
1B	6	12.2	
10	8	12.2	
1D	11	12.3	
1E	3	12.1	
1F	17	12.4	
1G	29	12.2	

Composite Watershed	67	12.2	

Return Frequency: 25 years

TR-55 TABULAR HYDROGRAPH METHOD Type II. Distribution (24 hr. Duration Storm)

Executed: 09-18-2000 12:51:33 Watershed file: --> P:\DATA\PROJECTS\3081\40\SW\COVER1 .MOP Hydrograph file: --> P:\DATA\PROJECTS\3081\40\SW\COVER125.HYD

Dairyland Power Coop. Fesibility Study Landfill Cover BJK 3/97

Subarea Description	11.0 hr	11.3 hr	11.6 hr	11.9 hr	12.0 hr	12.1 hr	12.2 hr	12.3 hr	12.4 hr
1A	0	0	0	1	2	3	4	2	1
1B	0	0	0	1	3	5	6	4	2
10	0	0	0	2	4	7	8	5	3
1D	0	0	1	1	2	5	8	11	11
1E	0	0	0	1	2	3	3	2	1
1F	0	1	1	2	3	5	9	15	17
1G	1	1	2	8	15	27	29	18	9

Subarea	12.5	12.6	12.7	12.8	13.0	13.2	13.4	13.6	13.8
Description	hr	hr	hr	hr	hr	hr	hr	hr	hr
1A	1.	1	1	0	0	0	0	0	0
1B	1	1	1	1	1	1	0	0	0
10	2	1	1	1	1	1	1	1	0
1D	8	6	4	3	2	2	1	1	1
1E	1	1	0	0	0	0	0	0	0
1F	17	13	10	8	5	3	3	2	2
1G	6	5	4	3	3	2	2	2	2
******	••••••								
Total (cfs)	36	28	21	16	12	9	7	6	5

Return Frequency: 25 years

TR-55 TABULAR HYDROGRAPH METHOD Type II. Distribution (24 hr. Duration Storm)

Executed: 09-18-2000 12:51:33 Watershed file: --> P:\DATA\PROJECTS\3081\40\SW\COVER1 .MOP Hydrograph file: --> P:\DATA\PROJECTS\3081\40\SW\COVER125.HYD

Dairyland Power Coop. Fesibility Study Landfill Cover BJK 3/97

Composite Hydrograph Summary (cfs)

Subarea Description	14.0 hr	14.3 hr	14.6 hr	15.0 hr	15.5 hr	16.0 hr	16.5 hr	17.0 hr	17.5 hr
1A	0	0	0	0	0	0	0	0	0
1B	0	0	0	0	0	0	0	0	0
10	0	0	0	0	0	0	0	0	0
1D	1	1	1	1	1	1	0	0	0
1E	0	0	0	0	0	0	0	0	0
1F	2	1	1	1	1	1	1	1	1
1G	1	1	1	1	1	1	1	1	1
Total (cfs)		3							

Subarea Description	18.0 hr	19.0 hr	20.0 hr	22.0 hr	26.0 hr	
1A	0	0	0	0	0	
1B	0	0	0	0	0	
10	0	0	0	0	0	
1D	0	0	0	0	0	
1E	0	0	0	0	0	
1F	1	1	1	0	0	
1G	1	1	0	0	0	
Total (cfs)	2	2	1	0	0	

TR-55 TABULAR HYDROGRAPH METHOD Type II. Distribution (24 hr. Duration Storm)

Executed: 07-30-1998 11:54:55 Watershed file: --> A:COVER1 .MOP Hydrograph file: --> A:COVER100.HYD

> Dairyland Power Coop. Fesibility Study Landfill Cover BJK 3/97

1 BLB 5/20/98

>>>> Input Parameters Used to Compute Hydrograph <<<<

Subarea Description	AREA (acres)	CN	Tc (hrs)	* Tt (hrs)	Precip. (in)	1	Runoff (in)	10110	/p /used
1A	1.40	74.0	0.20	0.00	6.10	1	3.27	1.12	.12
18	2.20	74.0	0.20	0.00	6.10	i.	3.27	1.12	.12
10	2.90	74.0	0.20	0.00	6.10	î.	3.27	1.12	.12
10	5.30	74.0	0.40	0.00	6.10	î.	3.27	1.12	.12
1E	1.20	74.0	0.20	0.00	6.10	Ì.	3.27	1.12	.12
1F	9.50	74.0	0.50	0.00	6.10	È	3.27	1.12	.12
16	7.40	84.0	0.20	0.00	6.10	i	4.29	1.06	.10

* Travel time from subarea outfall to composite watershed outfall point.

I -- Subarea where user specified interpolation between Ia/p tables.

Total area = 29.90 acres or 0.04672 sq.mi Peak discharge = 98 cfs

WARNING: Drainage areas of two or more subareas differ by a factor of 5 or greater.

22.5 ac (3.27") +	7. 4 ac (4. 24")
12	
= 3.8 ac-F	÷τ

Total Runoff

	Input	Values	Rounded	Values	Ia/p	
Subarea	Tc	* Tt	Tc	* Tt	Interpolated	i Ia/p
Description	(hr)	(hr)	(hr)	(hr)	(Yes/No)	Messages
A	0.18	0.00	0.20	0.00	Yes	
в	0.23	0.00	0.20	0.00	Yes	
C	0.23	0.00	0.20	0.00	Yes	
D	0.35	0.00	0.40	0.00	Yes	
E	0.18	0.00	0.20	0.00	Yes	
F	0.45	0.00	0.50	0.00	Yes	
G	0.22	0.00	0.20	0.00	No	Computed la/p < .

* Travel time from subarea outfall to composite watershed outfall point.

Quick TR-55 Version: 5.46 S/N:

Page 2 Return Frequency: 100 years

TR-55 TABULAR HYDROGRAPH METHOD Type II. Distribution (24 hr. Duration Storm)

Executed: 07-30-1998 11:54:55 Watershed file: --> A:COVER1 .MOP Hydrograph file: --> A:COVER100.HYD

> Dairyland Power Coop. Fesibility Study Landfill Cover BJK 3/97

>>>> Summary of Subarea Times to Peak <<<<

	Peak Discharge at Composite Outfall	Time to Peak at Composite Outfall
Subarea	(cfs)	(hrs)

1A	6	12.2
1B	9	12.2
1C	12	12.2
10	16	12.3
1E	5	12.2
1F	25	12.4
1G	40	12.2
**********	*******	
Composite Watershed	98	12.2

Page 3 Return Frequency: 100 years

TR-55 TABULAR HYDROGRAPH METHOD Type II. Distribution (24 hr. Duration Storm)

Executed: 07-30-1998 11:54:55 Watershed file: --> A:COVER1 .MOP Hydrograph file: --> A:COVER100.HYD

> Dairyland Power Coop. Fesibility Study Landfill Cover BJK 3/97

Composite Hydrograph Summary (cfs)

Subarea	11.0	11.3	11.6	11.9	12.0	12.1	12.2	12.3	12.4
Description	hr								
1A	0	0	0	1	3	5	6	3	2
18	0	0	0	2	4	8	9	5	3
IC	0	0	1	3	6	11	12	7	4
10	0	1	1	2	4	7	12	16	15
1E	0	0	0	1	2	4	5	3	2
(F)	1	1	1	2	4	8	14	22	25
16	1	2	2	10	20	37	40	24	12
Total (cfs)	2	4	5	21	43	80	98	80	63

Subarea	12.5	12.6	12.7	12.8	13.0	13.2	13.4	13.6	13.8
Description	hr	hr							

1A	1	1	1	1	1	0	0	0	0
18	2	1	1	1	1	1	1	1	1
10	3	2	2	1	1	1	1	1	1
1D	12	8	6	4	3	2	2	2	1
1E	1	1	1.1	1	0	0	0	0	0
1F	24	19	14	11	7	5	4	3	3
1G	8	6	5	4	3	3	3	2	2
Total (cfs)	51	38	30	23	16	12	11	9	8

-

Page 4 Return Frequency: 100 years

TR-55 TABULAR HYDROGRAPH METHOD Type II. Distribution (24 hr. Duration Storm)

Executed: 07-30-1998 11:54:55 Watershed file: --> A:COVER1 .MOP Hydrograph file: --> A:COVER100.HYD

> Dairyland Power Coop. Fesibility Study Landfill Cover BJK 3/97

Composite Hydrograph Summary (cfs)

Subarea Description	14.0 hr	14.3 hr	14.6 hr	15.0 hr	15.5 hr	16.0 hr	16.5 hr	17.0 hr	17.5 hr
1A	0	0	0	0	0	0	0	0	0
18	0	0	0	0	0	0	0	0	0
10	1	1	1	0	0	0	0	0	0
1D	1	1	1	1	1	1	1	1	1
1E	0	0	0	0	0	0	0	0	0
1F	2	2	2	2	1	1	1	1	1
IG	2	2	2	1	1	1	1	1	1
Total (cfs)	6	6	6	4	3	3	3	3	3

Subarea Description	18.0 hr	19.0 hr	20.0 hr	22.0 hr	26.0 hr	
1A	0	0	0	0	0	
18	0	0	0	0	0	
10	0	0	0	0	0	
1D	1	0	0	0	0	
1E	0	0	0	0	0	
1F	1	1	1	1	0	
1G	1	1	1	1	0	
Total (cfs)	3	2	2	2	0	

-

Page 1 Return Frequency: 25 years

--

TR-55 TABULAR HYDROGRAPH METHOD Type II. Distribution (24 hr. Duration Storm)

Executed: 09-18-2000 12:51:16 Watershed file: --> P:\DATA\PROJECTS\3081\40\SW\COVER2 .MOP Hydrograph file: --> P:\DATA\PROJECTS\3081\40\SW\COVER225.HYD

Dairyland Power Coop. Fesibility Study Landfill Cover BJK 3/97

>>>> Input Parameters Used to Compute Hydrograph <<<<

Subarea Description	AREA (acres)	CN	Tc (hrs)	* Tt (hrs)	Precip. (in)	ł	Runoff (in)	Ia input	/p /used
2A	2.70	74.0	0.30	0.00	4.90	ï	2.28	1.14	.14
2B	21.50	69.0	0.20	0.00	4.90	î.	1.89	1.18	.18

* Travel time from subarea outfall to composite watershed outfall point. I -- Subarea where user specified interpolation between Ia/p tables.

> Total area = 24.20 acres or 0.03781 sq.mi Peak discharge = 54 cfs

WARNING: Drainage areas of two or more subareas differ by a factor of 5 or greater.

>> Compu	ter Modif	ications	of Inpu	t Parameters <<	<<<
		*******			************
Input	Values	Rounded	Values	Ia/p	
Tc	* Tt	Tc	* Tt	Interpolated	la/p
(hr)	(hr)	(hr)	(hr)	(Yes/No)	Messages
	Input Tc	Input Values Tc * Tt	Input Values Rounded Tc * Tt Tc	Input Values Rounded Values Tc * Tt Tc * Tt	Tc * Tt Tc * Tt Interpolated

0.00

Yes

0.30 2B 0.18 0.00 0.20 0.00 Yes 14

* Travel time from subarea outfall to composite watershed outfall point.

2A

0.28

0.00

Page 2 Return Frequency: 25 years

TR-55 TABULAR HYDROGRAPH METHOD Type II. Distribution (24 hr. Duration Storm)

Executed: 09-18-2000 12:51:16 Watershed file: --> P:\DATA\PROJECTS\3081\40\SW\COVER2 .MOP Hydrograph file: --> P:\DATA\PROJECTS\3081\40\SW\COVER225.HYD

> Dairyland Power Coop. Fesibility Study Landfill Cover BJK 3/97

>>>> Summary of Subarea Times to Peak <<<<

	Peak Discharge at Composite Outfall	Time to Peak at Composite Outfall
Subarea	(cfs)	(hrs)

2A	6	12.2
2B	48	12.2
Composite Watershed	54	12.2

Return Frequency: 25 years

TR-55 TABULAR HYDROGRAPH METHOD Type II. Distribution (24 hr. Duration Storm)

Executed: 09-18-2000 12:51:16 Watershed file: --> P:\DATA\PROJECTS\3081\40\SW\COVER2 .MOP Hydrograph file: --> P:\DATA\PROJECTS\3081\40\SW\COVER225.HYD

Dairyland Power Coop. Fesibility Study Landfill Cover BJK 3/97

Subarea Description	11.0	11.3	11.6	11.9	12.0	12.1	12.2	12.3	12.4
Description	hr								
2A	0	0	0	1	2	4	6	6	4
2B	1	1	2	9	20	42	48	31	17

Subarea Description	12.5 hr	12.6 hr	12.7 hr	12.8 hr	13.0 hr	13.2 hr	13.4 hr	13.6 hr	13.8 hr
2A	3	2	1	1	1	1	1	1	0
28	11	9	7	6	5	4	4	4	3

Subarea Description	14.0 hr	14.3 hr	14.6 hr	15.0 hr	15.5 hr	16.0 hr	16.5 hr	17.0 hr	17.5 hr
2A	0	0	0	0	0	0	0	0	0
2B	3	3	2	2	2	2	2	2	1

Total (cfs)	3	3	2	2	2	2	2	2	1

Subarea	18.0	19.0	20.0	22.0	26.0
Description	hr	hr	hr	hr	hr
2A	0	0	0	0	0
2B	- 1	1	1	1	0

Page 1 Return Frequency: 100 years

TR-55 TABULAR HYDROGRAPH METHOD Type II. Distribution (24 hr. Duration Storm)

Executed: 10-01-1998 15:19:47 Watershed file: --> A:\COVER2 .MOP Hydrograph file: --> A:\COVER200.HYD

> Dairyland Power Coop. Fesibility Study Landfill Cover BJK 3/97

>>>> Input Parameters Used to Compute Hydrograph <<<<

Subarea Description	AREA (acres)	CN	Tc (hrs)	* Tt (hrs)	Precip. (in)	1	Runoff (in)	Ia input	/p /used
2A	2.70	74.0	0.30	0.00	6.10	1	3.27	1.12	.12
2B	21.50	69.0	0.20	0.00	6.10	Î.	2.79	1.15	.15

* Travel time from subarea outfall to composite watershed outfall point. I -- Subarea where user specified interpolation between Ia/p tables.

> Total area = 24.20 acres or 0.03781 sq.mi Peak discharge = 82 cfs

WARNING: Drainage areas of two or more subareas differ by a factor of 5 or greater.

>>>> Computer Modifications of Input Parameters <<<<<

	Input	Values	Rounded	Values	la/p	
Subarea	Tc	* Tt	Tc	* Tt	Interpolated	Ia/p
Description	(hr)	(hr)	(hr)	(hr)	(Yes/No)	Messages
			********		**************	
2A	0.28	0.00	0.30	0.00	Yes	
2B	0.18	0.00	0.20	0.00	Yes	

* Travel time from subarea outfall to composite watershed outfall point.

Page 2 Return Frequency: 100 years

TR-55 TABULAR HYDROGRAPH METHOD Type II. Distribution (24 hr. Duration Storm)

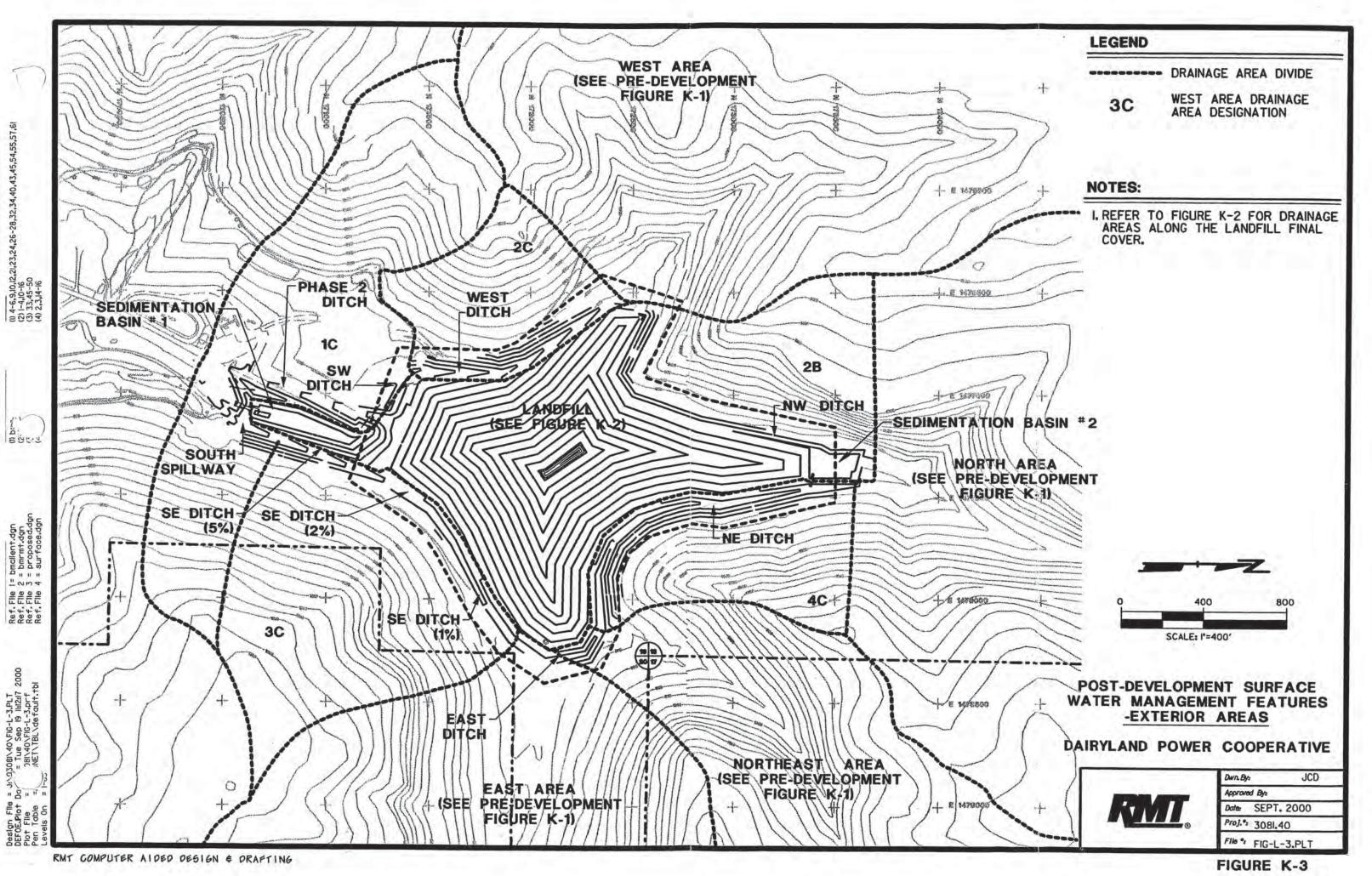
Executed: 10-01-1998 15:19:47 Watershed file: --> A:\COVER2 .MOP Hydrograph file: --> A:\COVER200.HYD

> Dairyland Power Coop. Fesibility Study Landfill Cover BJK 3/97

>>>> Summary of Subarea Times to Peak <<<<

	Peak Discharge at Composite Outfall	Time to Peak at Composite Outfall
Subarea	(cfs)	(hrs)

2A	9	12.2
2B	73	12.2
************		**********
Composite Watershed	82	12.2


Page 3 Return Frequency: 100 years

TR-55 TABULAR HYDROGRAPH METHOD Type II. Distribution (24 hr. Duration Storm)

Executed: 10-01-1998 15:19:47 Watershed file: --> A:\COVER2 .MOP Hydrograph file: --> A:\COVER200.HYD

> Dairyland Power Coop. Fesibility Study Landfill Cover BJK 3/97

Subarea	11.0	11.3	11.6	11.9	12.0	12.1	12.2	12.3	12
Description	hr	hr	hr	hr	hr	hr	hr	hr	h
ZA	0	0	1	1	3	6	9	9	17
2B	2	2	3	16	33	65	73	45	2
Total (cfs)	2	2	4	17	36	71	82	54	3
Subarea	12.5	12.6	12.7	12.8	13.0	13.2	13.4	13.6	13
Description	hr	hr	hr	hr	hr	hr	hr	hr	h
2A	4	3	2	2	1	1	1	1	
28	16	13	10	9	7	6	6	5	1
Total (cfs)	20	16	12	11	8	7	7	6	
Subarea	14.0	14.3	14.6	15.0	15.5	16.0	16.5	17.0	17.
Description	hr	hr	hr	hr	hr	hr	hr	hr	h
2A	1	1	0	0	0	0	0	0	
2B	4	4	3	3	3	3	2	2	1
Total (cfs)	5	5	3	3	3	3	2	2	-
			and a						
Subarea	18.0	19.0	20.0	22.0	26 0				
and the second sec	18.0 hr	19.0 hr	20.0	22.0	26.0			3) -	
Subarea Description	18.0 hr	19.0 hr	20.0 hr	22.0 hr	26.0 hr				
and the second sec									

> Dairyland Power Coop. Feasibility Report PostDevelopment Conditions BJK 5/97 rev 7/98

RUNOFF CURVE NUMBER SUMMARY

Subarea	Area	CN
Description	(acres)	(weighted)
10	42.00	67
20	15.00	56
30	33.00	58
40	16.00	57
East	520.00	67
Northeast	80.00	63
North	236.00	63
West	100.00	71

Dairyland Power Coop. Feasibility Report PostDevelopment Conditions BJK 5/97 rev 7/98

RUNOFF CURVE NUMBER DATA

Composite Area: 1C

SURFACE DESCRIPTION	AREA (acres)	CN	
Woods (35%)	15.00	55	
Existing Landfill (50%)	21.00	74	
Graded Areas (10%)	4.00	61	
Fallow - Bare Soil (5%)	2.00	86	

COMPOSITE AREA ---> 42.00 66.5 (67)

Composite Area: 2C

	AREA	CN	
SURFACE DESCRIPTION	(acres)		
Woods (85%)	12.80	55	
Graded Areas (15%)	2.20	61	

COMPOSITE AREA ---> 15.00 55.9 (56)

Composite Area: 3C

SURFACE DESCRIPTION	AREA (acres)	CN	
Woods (80%)	27.00	55	
Graded Areas (10%)	3.00	61	
Fallow - Bare Soil (10%)	3.00	86	
COMPOSITE AREA>	33.00	58.4	(58)

1940 Martin Martin Martin Martin Martin Martin

Composite Area: 4C

SURFACE DESCRIPTION	AREA (acres)	CN	
	********	****	
Woods (75%)	12.00	55	
Graded Areas (25%)	4.00	61	
COMPOSITE AREA>	16.00	56.5	(57)

Composite Area: East

	AREA	CN	
SURFACE DESCRIPTION	(acres)		

Woods (60%)	312.00	55	
Fallow - Bare Soil (40%)	208.00	86	

COMPOSITE AREA ---> 520.00 67.4 (67)

Composite Area: Northeast

SURFACE DESCRIPTION	AREA (acres)	CN				

Woods (75%)	60.00	55				
Fallow - Bare Soil (25%)	20.00	86				
COMPOSITE AREA>	80.00	62.8	(6	3	2

Composite Area: North

	A COMPANY OF THE		
	AREA	CN	
SURFACE DESCRIPTION	(acres)		
************************************	********		
Woods (75%)	177.00	55	
Fallow - Bare Soil (25%)	59.00	86	

COMPOSITE AREA ---> 236.00 62.8 (63)

> VB28 8/20/98

Composite Area: West

	AREA	CN	
SURFACE DESCRIPTION	(acres)		
Woods (50%)	50.00	55	
Fallow - Bare Soil (50%)	50.00	86	
COMPOSITE AREA>	100.00	70.5	(71)

Quick TR-55 Ver.5.46 S/N: Executed: 09:21:09 05-09-1997 a:POSTDVTC.TCT

> SUMMARY SHEET FOR Tc or Tt COMPUTATIONS (Solved for Time using TR-55 Methods)

Dairyland Power Coop. Feasibility Report PostDevelopment Conditions BJK 5/97

Subarea descr.	Tc or Tt	Time (hrs)
10	Tc	0.35
20	Tc	0.32
30	Tc	0.41
40	Tc	0.38
East	Tc	0.68
Northeast	Tc	0.37
North	Tc	0.53
West	Tc	0.52

. .

Quick TR-55 Ver.5.46 S/N: Executed: 09:21:09 05-09-1997 a:POSTDVTC.TCT

> Dairyland Power Coop. Feasibility Report PostDevelopment Conditions BJK 5/97

TC COMPUTATIONS FOR: 1C

SHEET FLOW (Applicable to Tc only)				
Segment ID	-	1		
Surface description	Woo			
Manning's roughness coeff., n	WOOR	0.4000		
Flow length, L (total < or = 300) ft			
			1	
Two-yr 24-hr rainfall, P2	in	2.800	/	
Land slope, s	ft/ft	0.2700		
0.8				
.007 * (n*L)	1.1.1	1.24		14.4
T =	hrs	0.33		0.3
0.5 0.4 P2 * s				
SHALLOW CONCENTRATED FLOW		1.1		
Segment ID		2		
Surface (paved or unpaved)?		Unpaved		
Flow length, L	ft	650.0		
Watercourse slope, s	ft/ft	0.5000	/	
0.5				
Avg.V = Csf * (s)	ft/s	\$11.408	8	
where: Unpaved Csf = 16.1345				
Paved Csf = 20.3282				
T = L / (3600*V)	hrs	0.02		0.0
CHANNEL FLOW		6.5		
Segment ID	an a sea d	3		
Cross Sectional Flow Area, a	sq.ft	42.00		
Wetted perimeter, Pw	ft	28.00		
Hydraulic radius, r = a/Pw	ft	1.500		
Channel slope, s	ft/ft	0.1500		
Manning's roughness coeff., n		0.0450		
2/3 1/2				
1.49 * r * s				
V =	ft/s	\$16.804	0	
n				
Flow length, L	ft	500 -		
T = L / (3600*V)	hrs	0.01		0.0

6/17/97

-

Quick TR-55 Ver.5.46 S/W: Executed: 09:21:09 05-09-1997 a:POSTDVTC.TCT

Dairyland Power Coop. Feasibility Report PostDevelopment Conditions BJK 5/97

Te COMPUTATIONS FOR: 20

SHEET FLOW (Applicable to Tc only)	4			
Segment ID		1		
Surface description	Wood	ds		
Manning's roughness coeff., n		0.4000		
Flow length, L (total < or = 300)	ft	300.0		
Two-yr 24-hr rainfall, P2	in	2.800		
Land slope, s	ft/ft			
0.8		0.4200		
.007 * (n*L)				
	hrs	0.27		
0.5 0.4	0	0.21	•	0.27
P2 * s				
SHALLOW CONCENTRATED FLOW				
Segment ID		2		
Surface (paved or unpaved)?		Unpeved		
Flow length, L	ft	370.0 -		
Watercourse slope, s	ft/ft	0.4200 /		
0.5				
Avg.V = Csf * (s)	ft/s	\$10.4564		
where: Unpaved Csf = 16.1345				
Paved Caf = 20.3282				
T = L / (3600*V)	hrs	0.01	•	0.01
CHANNEL FLOW		and the second se		
Segment ID		3		
Cross Sectional Flow Area, a	sq.ft	17.00		
Wetted perimeter, Pw	ft	17.00		
Hydraulic radius, r = a/Pw	ft	1.000		
Channel slope, s	ft/ft	0.0600 -		
Manning's roughness coeff., n		0.0450		
2/3 1/2				
1.49 * r * s				
V =	ft/s	8.1105		
n				
Flow length, L	ft	1050 -		
T = L / (3600*V)	hrs	0.04		0.04
		TOTAL TIME (hrs)		0.32

Quick TR-55 Ver.5.46 S/N: Executed: 09:21:09 05-09-1997 a:POSTDVTC.TCT

6/17/97

Dairyland Power Coop. Feasibility Report PostDevelopment Conditions BJK 5/97

TE COMPUTATIONS FOR: 3C

SHEET FLOW (Applicable to Tc only)	÷.,			
Segment ID		1		
Surface description	RON	Crops		
Manning's roughness coeff., n		0.1700		
Flow length, L (total < or = 300)	ft	300.0		
Two-yr 24-hr rainfall, P2	in			
Land slope, s	ft/ft			
0.8				
.007 * (n*L)				
T =	hrs	0.32		0.32
0.5 0.4				0.05
P2 * s				
SHALLOW CONCENTRATED FLOW				
Segment ID		2		
Surface (paved or unpaved)?		Unpaved		
Flow length, L	ft			
Watercourse slope, s	ft/ft	0.3600 /		
0.5		- Auto -		
Avg.V = Csf * (s)	ft/s	9.6807		
where: Unpaved Csf = 16.1345				
Paved Csf = 20.3282				
T = L / (3600*V)	hrs	0.03	1.2	0.03
CHANNEL FLOW				
Segment ID				
	12 M	3		
Cross Sectional Flow Area, a	sq.ft	150.00 -		
Wetted perimeter, Pw	ft	45.00 -		
Hydraulic radius, r = a/Pw	ft	3.333		
	ft/ft	0.0150		
Manning's roughness coeff., n		0.0600 -		
2/3 1/2				
1.49 * r * s				
V =	4.7			
v	ft/s	6.7868		
Flow Length, L	ft	1450 -		
	1.54	6.0		
T = L / (3600*V)	hrs	0.06		0.06
		TOTAL TIME (175)	0.41

> Dairyland Power Coop. Feasibility Report PostDevelopment Conditions BJK 5/97

> > .

TC COMPUTATIONS FOR: 4C

SHEET FLOW (Applicable to Tc only)	-00				
Segment 10		1			
Surface description	Noo	ds			
Manning's roughness coeff., n		0.4000			
Flow length, L (total < or = 300) ft	300.0 /			
Two-yr 24-hr rainfall, P2	in	2.800			
Land slope, s	ft/ft	0.3700 -			
0.8					
.007 * (n*L)					
T =	hrs	0.29			0.29
0.5 0.4					
P2 * s					
SHALLOW CONCENTRATED FLOW					
Segment ID		2			
Surface (paved or unpaved)?		Unpaved			
Flow length, L	ft	390.0 -			
Watercourse slope, s	ft/ft	0.5000 -			
0.5					
Avg.V = Csf * (s)	ft/s	\$11.4088			
where: Unpaved Csf = 16.1345	62.3	C. C	-		
Paved Csf = 20.3282					
T = L / (3600*V)	hrs	0.01		•	0.01
CHANNEL FLOW					
Segment ID		3			
Cross Sectional Flow Area, a	sq.ft	28.00			
Wetted perimeter, Pw	ft	20.00 /			
Hydraulic radius, r = a/Pw	ft	1.400			
Channel slope, s	ft/ft	0.0200			
Manning's roughness coeff., n		0.0500			
2/3 1/2					
1.49 * 5 * 5					
V =	ft/s	5.2741			
n					
Flow length, L	ft	1670 -			
T = L / (3600*V)	hrs	0.09	1		0.09
		TOTAL TIME			0.38

VB10 6/17/97

> Dairyland Power Coop. Feasibility Report PostDevelopment Conditions BJK 5/97

6/17/97

To COMPUTATIONS FOR: East

SHEET FLOW (Applicable to Tc only)					
Segment ID		1			
Surface description	Row	Crops			
Manning's roughness coeff., n		0.1700			
Flow Length, L (total < or = 300)	ft	300.0	•		
Two-yr 24-hr rainfall, P2	in	2.800			
Land slope, s	ft/ft	0.0500	-		
0.8					
.007 * (n*L)					
T =	hrs	0.32		1.1.1	0.32
0.5 0.4					
PZ * s					
SHALLOW CONCENTRATED FLOW					
Segment ID		2			
Surface (paved or unpaved)?		Unpaved			
Flow Length, L	ft	2000.0	1		
Watercourse slope, s	ft/ft	0.0700	-		
0.5					
Avg.V = Csf * (s)	ft/s	4.2688			
where: Unpaved Csf = 16.1345					
Paved Csf = 20.3282					
T = L / (3600*V)	hrs	0.13		- 0	0.13
CHANNEL FLOW					
Segment ID		3	4		
Cross Sectional Flow Area, a	sq.ft	27.00	27.	.00	
Wetted perimeter, Pw	ft	16.40			
Hydraulic radius, r = a/Pw	ft	1.646		46	
Channel slope, s	ft/ft	0.0700		- 00	
Manning's roughness coeff., n		0.0700	0.07	700	
2/3 1/2					
1 /0 0 0 0					
1.49 * r * s					

1.49 * r * s		
V =	ft/s 7.8521 5.9356	
n		
Flow length, L	ft 2500 / 3000 /	
T = L / (3600*V)	hrs 0.09 + 0.14 = 0.23	

TOTAL TIME (hrs) 0.68

> Dairyland Power Coop. Feasibility Report PostDevelopment Conditions BJK 5/97

Tc COMPUTATIONS FOR: Northeast

SHEET FLOW (Applicable to Tc only)					
Segment ID		1			
Surface description	Row	Crops			
Manning's roughness coeff., n		0.1700			
Flow Length, L (total < or = 300)	ft	300.0	1		
Two-yr 24-hr rainfall, P2	in	2.800			
Land slope, s	ft/ft	0.0800	1		
0.8					
.007 * (n*L)					
T =	hrs	0.27		14	0.27
0.5 0.4					
P2 * s					
SHALLOW CONCENTRATED FLOW					
Segment ID		2			
Surface (paved or unpaved)?		Unpaved			
Flow length, L	ft				
Watercourse slope, s	ft/ft	0.0700	-		
0.5					
Avg.V = Csf * (s)	ft/s	4.2688			
where: Unpaved Csf = 16.1345	100.0				
Paved Csf = 20.3282					
T = L / (3600*V)	hrs	0.04		•	0.04
CHANNEL FLOW					
Segment ID		3			
Cross Sectional Flow Area, a	sq.ft				
Wetted perimeter, Pw	ft				
Hydraulic radius, r = a/Pw	ft	1.646	0-		
Channel slope, s	ft/ft		· · · ·		
Nanning's roughness coeff., n		0.0700			
2/3 1/2					
1.49 * r * s					
V =	ft/s	\$11.104	5		
n					
Flow length, L	ft	2400			
T = L / (3600*V)	hrs	0.06		÷	0.06
		TOTAL T	IME (hrs)		0.37

1828 6/17/97

> Dairyland Power Coop. Feasibility Report PostDevelopment Conditions BJK 5/97

1888

Te COMPUTATIONS FOR: North

SHEET FLOW (Applicable to Tc only)	1.1				
Segment ID		1			
Surface description	al < or = 300) ft 300.0 ~				
Manning's roughness coeff., n		0.1700			
Flow length, L (total < or = 300)	ft	300.0 -			
Two-yr 24-hr rainfall, P2	in	2.800			
Land slope, s	ft/ft	0.0500			
0.8					
.007 * (n*L)					
T =	hrs	0.32		= 0.32	
0.5 0.4					
P2 * s					
SHALLOW CONCENTRATED FLOW					
Segment ID		2			
Surface (paved or unpaved)?		Unpaved			
Flow Length, L	ft	1000.0 /			
Watercourse slope, s	ft/ft	0.0600 /			
0.5					
Avg.V = Csf * (s)	ft/s	3.9521			
where: Unpaved Csf = 16.1345	14/8	3.9321			
Paved Csf = 20.3282					
T = L / (3600*V)	hrs	0.07	1.1	= 0.07	
CHANNEL FLOW					
Segment 1D		3			
Cross Sectional Flow Area, a	sq.ft	27.00			
Wetted perimeter, Pw	ft	16.40			
Hydraulic radius, r = a/Pw	ft	1.646			
Channel slope, s	ft/ft	0.0830 /			
Manning's roughness coeff., n		0.0700			
2/3 1/2					
1.49 * * * *					
V =	ft/s	8.5502			
n	14.0	CISSOE			
etail (0.5				
Flow length, L	ft	4200			
T = L / (3600*V)	hrs	0.14		0.14	
		TOTAL THE			:
		TOTAL TIME	(nrs)	0.53	

> Dairyland Power Coop. Feasibility Report PostDevelopment Conditions BJK 5/97

To COMPUTATIONS FOR: West

= 0.32
= 0.09
= 0.10

Quick TR-55 Ver.5.46 S/N: Executed: 11:30:57 D6-18-1997 a:POSTDVTT.TCT

> SUMMARY SHEET FOR Tc or Tt COMPUTATIONS (Solved for Time using TR-55 Methods)

Dairyland Power Coop. Feasibility Report PostDevelopment Conditions BJK 5/97

Subarea descr.	Tc or Tt	Time (hrs)
10	Tt	0.00
20	Tt	0.05
30	Tt	0.01
40	Tt	0.09
East	Tt	0.07
Northeast	Tt	0.09
North	Tt	0.18
West	Tt	0.08

> Dairyland Power Coop. Feasibility Report PostDevelopment Conditions BJK 5/97

> > 1.1

BfB *

Tt COMPUTATIONS FOR: 2C

SHEET FLOW (Applicable to Tc only)				
Segment ID				
Surface description				
Manning's roughness coeff., n		0.0000		
Flow length, L (total < or = 300)	ft	0.0		
Two-yr 24-hr rainfall, P2	in	0.000		
Land slope, s	ft/ft	0.0000		
0.8				
.007 * (n*L)				
T =	hrs	0.00		0.00
0.5 0.4				11.14
P2 * s				
HALLOW CONCENTRATED FLOW				
Segment ID				
Surface (paved or unpaved)?				
Flow Length, L	ft	0.0		
Watercourse slope, s	ft/ft	0.0000		
0.5				
Avg.V = Csf * (s)	ft/s	0.0000		
where: Unpaved Caf = 16.1345	0.942			
Paved Csf = 20.3282		× .		
T = L / (3600*V)	hrs	0.00	•	0.00
HANNEL FLOW				
Segment ID		3 I I I I I I I I I I I I I I I I I I I		
Cross Sectional Flow Area, a		17.00		
Wetted perimeter, Pw	sq.ft	17.00		
Hydraulic radius, r = a/Pw	ft	17.00		
Channel slope, s	NA 6.74			
Manning's roughness coeff., n	ft/ft			
Manning's roughness coerr., n		0.0450		
2/3 1/2				
1.49 * r * s				
V =	ft/s	7.4039		
n				
Class Januarity 1				
Flow length, L	71	1200 -		
T = L / (3600*V)	hrs	0.05		0.05
		TOTAL TIME (hrs)		0.05

> Dairyland Power Coop. Feasibility Report PostDevelopment Conditions BJK 5/97

TE COMPUTATIONS FOR: 3C

SHEET FLOW (Applicable to Tc only) Segment ID Surface description 0.0000 Hanning's roughness coeff., n Flow length, L (total < or = 300) ft 0.0 Two-yr 24-hr mainfall, P2 in 0.000 0.0000 Land slope, s ft/ft 0.8 .007 * (n*L) T = ----hrs 0.00 0.5 0.4 P2 * 5 SHALLOW CONCENTRATED FLOW Segment ID Surface (paved or unpaved)? Flow Length, L 0.0 ft Watercourse slope, s ft/ft 0.0000 0.5 Avg.V = Csf * (s) 0.0000 ft/s where: Unpaved Csf = 16.1345 Paved Csf = 20.3282

T = L / (3600*V) hrs

CHANNEL FLOW

Segment ID		1	
Cross Sectional Flow Area, a	sq.ft	42.00 -	
Wetted perimeter, Pw	ft	28.00 -	
Hydraulic radius, r = a/Pw	ft	1.500	
Channel slope, s	ft/ft	0.1500 /	
Manning's roughness coeff., n		0.0450	
2/3 1/2			
1/0 * * * *			

V =	ft/s	%16.8040		
n Flow length, L	ft	550 -	3	
T = L / (3600*V)	hrs	0.01		

TOTAL TIME (hrs) 0.01

0.00

6/17/97

0.00

0.00

0.01

=

> Dairyland Power Coop. Feasibility Report PostDevelopment Conditions BJK 5/97

TE COMPUTATIONS FOR: 4C

T = L / (3600*V)	hrs	80.0	+ 0.01	=	0.09
Flow length, L	ft	1950/	550 /		
n			000000		
V =	ft/s	6.7868	\$16.8040		
1.49 * r * s					
2/3 1/2					
		510000	3.0430		
Manning's roughness coeff., n		0.0600	0.0450		
Channel slope, s	ft/ft	0.0150/	0.1500 /		
Hydraulic radius, r = a/Pw	ft	3.333	1.500		
Wetted perimeter, Pw	sq.rt	150.00	42.00 28.00		
		1	2		
Segment ID					
MANNEL TO MA					
T = L / (3600*V)	hrs	0.00		•	0.00
Paved Csf = 20.3282					
where: Unpaved Csf = 16.1345					
Avg.V = Csf * (s)	ft/s	0.0000			
0.5					
Watercourse slope, s	ft/ft	0.0000			
Flow length, L	ft				
Surface (paved or unpaved)?	140				
Segment ID					
SHALLOW CONCENTRATED FLOW					
P2 * s					
0.5 0.4		0.11			
T =	hrs	0.00		i.	0.00
.007 * (n*L)					
0.8		0.0000			
Land slope, s	ft/ft	0.000			
Flow length, L (total < or = 300) Two-yr 24-hr rainfall, P2	ft	0.0			
Manning's roughness coeff., n		0.0000			
Advance of the second					
Surface description					

- ÷.

6/17/97

> Dairyland Power Coop. Feasibility Report PostDevelopment Conditions BJK 5/97

1 alinen

Tt COMPUTATIONS FOR: East

SHEET FLOW (Applicable to Tc only)	*				
Segment ID					
Surface description		E. 4.15			
Manning's roughness coeff., n		0.0000			
Flow length, L (total < or = 300)		1 I. J. 1977			
Two-yr 24-hr rainfall, P2	in	23587			
Land slope, s	ft/ft	0.0000			
0.8					
.007 * (n*L)					1.00
T =	hrs	0.00			0.00
0.5 0.4					
P2 * s					
HALLOW CONCENTRATED FLOW					
Segment ID					
Surface (paved or unpaved)?					
Flow length, L	ft	0.0			
Watercourse slope, s	ft/ft	0.0000			
0.5					
Avg.V = Csf * (s)	ft/s	0.0000			
where: Unpaved Csf = 16.1345					
Paved Csf = 20.3282					
T = L / (3600*V)	hrs	0.00		•	0.00
HANNEL FLOW					
Segment ID		1	2		
Cross Sectional Flow Area, a	sq.ft	150.00	42.00		
Wetted perimeter, Pw	ft	45.00	28.00		
Hydraulic radius, r = a/Pw	ft	3.333	1.500		
Channel slope, s	ft/ft	0.0150	0.1500		
Manning's roughness coeff., n		0.0600	0.0450		
2/3 1/2					
1.49 * r * s					
V =	ft/s	6.7868	\$16.8040	έπ.	
n					
Flow length, L	ft	1600 /	550	•	
T = L / (3600"V)	hrs	0.07	0.01		0.07
		TOTAL TIP			0.07

Quick TR-55 Ver.5.46 S/N: Executed: 11:30:57 06-18-1997 a:POSTDVTT.TCT

> Dairyland Power Coop. Feasibility Report PostDevelopment Conditions BJK 5/97

Tt COMPUTATIONS FOR: Northeast

and the second se					
SHEET FLOW (Applicable to Tc only)	1				
Segment ID					
Surface description					
Manning's roughness coeff., n		0.0000			
Flow length, L (total < or = 300)) ft	0.0			
Two-yr 24-hr rainfall, P2	in	0.000			
Land slope, s	ft/ft	0.0000			
0.8					
.007 * (n*L)					
T =	hrs	0.00			0.0
0.5 0.4					
PZ * s					
SHALLOW CONCENTRATED FLOW					
Segment ID					
Surface (paved or unpaved)?					
Flow length, L	ft	0.0			
Watercourse slope, s	ft/ft	0.0000			
0.5					
Avg.V = Csf * (s)	ft/s	0.0000			
where: Unpaved Csf = 16.1345	11/5	0.0000			
Paved Csf = 20.3282					
T = L / (3600*V)	hrs	0.00			0.00
CHANNEL FLOW					
Segment ID		1	2		
Cross Sectional Flow Area, a	sq.ft	150.00	42.00		
Wetted perimeter, Pw	ft	45.00	28.00		
Hydraulic radius, r = a/Pw	ft	3.333	1.500		
Channel slope, s	ft/ft	0.0150-	0.1500 -	1	
Manning's roughness coeff., n		0.0600	0.0450		
2/3 1/2					
1.49 * r * s					
V =	ft/s	6.7868	\$16.8040	0	
n					
Flow length, L	ft	1870 /	550		
T = L / (3600*V)	hrs	0.08 +	0.01	-	0.09
		TOTAL TIN	E (hrs)		0.09

6/17/91

•

Quick TR-55 Ver.5.46 S/N: Executed: 11:30:57 06-18-1997 a:POSTDVTT.TCT

> Dairyland Power Coop. Feasibility Report PostDevelopment Conditions BJK 5/97

Tt COMPUTATIONS FOR: North

SHEET FLOW (Applicable to Tc only)					
Segment ID					
Surface description					
Manning's roughness coeff., n		0.0000			
Flow length, L (total < or = 300)	ft	0.0			
Two-yr 24-hr rainfall, P2	in	0.000			
Land slope, s	ft/ft	0.0000			
0.8					
.007 * (n*L)					
T =	hrs	0.00			0.00
0.5 0.4					12.00
P2 * s					
HALLOW CONCENTRATED FLOW					
Segment ID					
Surface (paved or unpaved)?	3	and a			
Flow length, L	ft	0.0			
Watercourse slope, s	ft/ft	0.0000			
0.5					
Avg.V = Csf * (s)	ft/s	0.0000			
where: Unpaved Csf = 16.1345		Prove a			
Paved Csf = 20.3282					
T = L / (3600*V)	hrs	0.00		•	0.00
HANNEL FLOW					
Segment ID		1	2		
	sq.ft	28.00	150.00		
Wetted perimeter, Pw	ft	20.00	45.00		
Hydraulic radius, r = a/Pw	ft	1.400	3.333		
	ft/ft	0.0200-	0.0150	1	
Manning's roughness coeff., n		0.0500	0.0600		
2/3 1/2					
1.49 * r * s					
V =	ft/s	5.2741	6.7868		
	1.7.	3.6/41	0.7000		
	ft	1670 -	2250	1	
Flow length, L	1.07				
Flow length, L T = L / (3600*V)	hrs	0.09 +	0.09		0.18
				=	0.18
		0.09 +		•	0.18

BBBINAN

1.0

> Dairyland Power Coop. Feasibility Report PostDevelopment Conditions BJK 5/97

Tt COMPUTATIONS FOR: West

SHEET FLOW (Applicable to Tc only)					
Segment ID					
Surface description					
Manning's roughness coeff., n		0.0000			
Flow length, L (total < or = 300)	ft	0.0			
Two-yr 24-hr rainfall, P2	in				
Land slope, s	ft/ft	1 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 -			
0.8					
.007 * (n*L)					
T =	hrs	0.00			0.00
0.5 0.4				1.5	0.00
P2 * s					
SHALLOW CONCENTRATED FLOW					
Segment ID					
Surface (paved or unpaved)?					
Flow Length, L	ft	0.0			
Watercourse slope, s	ft/ft	0.0000			
0.5 Avg.V = Csf * (s)	ft/s	0.0000			
where: Unpaved Csf = 16.1345	11/1	0.0000			
Paved Csf = 20.3282			1		
Paven Car - 20.3202					
T = L / (3600*V)	hrs	0.00		•	0.00
CHANNEL FLOW					
Segment ID	1.10	1	2		
Cross Sectional Flow Area, a	sq.ft		17.00		
Wetted perimeter, Pw	ft	17.00	17.00		
Hydraulic radius, r = a/Pw	ft	······································	1.000	5	
Channel slope, s	ft/ft	0.0600	0.0500	1	
Manning's roughness coeff., n		0.0450	0.0450		
2/3 1/2					
1.49 * r * *					
V =	ft/s	8.1105	7.4039		
		0.1105	7.4039		
Flow length, L	ft	1050 -	1200	/	
T = L / (3600*V)	hrs	0.04 +	0.05	4	0.08
		TOTAL TIN		10000	
		Torne 110	- (11.6)		0.00

1 328 6/17/97

Page 1 Return Frequency: 25 years

TR-55 TABULAR HYDROGRAPH METHOD Type II. Distribution (24 hr. Duration Storm)

Executed: 09-18-2000 12:58:17 Watershed file: --> P:\DATA\PROJECTS\3081\40\SW\POSTDV2 .MOP Hydrograph file: --> P:\DATA\PROJECTS\3081\40\SW\POSTDV25.HYD

> Dairyland Power Coop. Feasibility Report PostDevelopment Conditions BJK 5/97 REV 9/98

>>>> Input Parameters Used to Compute Hydrograph <<<<

Subarea Description	AREA (acres)	CN	Tc (hrs)	* Tt (hrs)	Precip. (in)	Runoff (in)	Ia input	/p /used
10	42.00	67.0	0.40	0.00	4.90	1.73	1.2	.20
20	15.00	56.0	0.30	0.10	4.90	0.99	1.32	.32
30	33.00	58.0	0.40	0.00	4.90	1.11	1.3	.30
4C	16.00	57.0	0.40	0,10	4.90	1.05	1.31	.31
East	520.00	67.0	0.75	0.00	4.90	1.73	1.2	.20
Northeast	80.00	63.0	0.40	0.10	4.90	1.45	1.24	.24
North	236.00	63.0	0.50	0.20	4.90	1.45	1.24	.24
West	100.00	71.0	0.50	0.10	4.90 İ	2.04	1.17	.17

* Travel time from subarea outfall to composite watershed outfall point.

1 -- Subarea where user specified interpolation between Ia/p tables.

Total area = 1042.00 acres or 1.6281 sq.mi Peak discharge = 1027 cfs

WARNING: Drainage areas of two or more subareas differ by a factor of 5 or greater.

>>>> Computer Modifications of Input Parameters <<<<<

	Input	Values	Rounder	d Values	Ia/p	
Subarea	Tc	* Tt	Tc	* Tt	Interpolated	Ia/p
Description	(hr)	(hr)	(hr)	(hr)	(Yes/No)	Messages

10	0.35	0.00	0.40	0.00	Yes	
20	0.32	0.05	0.30	0.10	Yes	
3C	0.41	0.01	0.40	0.00	Yes	1441
4C	0.38	0.09	0.40	0.10	Yes	1000
last	0.68	0.07	0.75	0.00	Yes	
lortheast	0.37	0.09	0.40	0.10	Yes	(4.4)
lorth	0.53	0.18	0.50	0.20	Yes	
lest	0.52	0.08	0.50	0.10	Yes	

Travel time from subarea outfall to composite watershed outfall point.

Total Runoff

= 141.9 ac-ft

Page 2 Return Frequency: 25 years

TR-55 TABULAR HYDROGRAPH METHOD Type II. Distribution (24 hr. Duration Storm)

Executed: 09-18-2000 12:58:17 Watershed file: --> P:\DATA\PROJECTS\3081\40\SW\POSTDV2 .MOP Hydrograph file: --> P:\DATA\PROJECTS\3081\40\SW\POSTDV25.HYD

Dairyland Power Coop. Feasibility Report PostDevelopment Conditions BJK 5/97 REV 9/98

>>>> Summary of Subarea Times to Peak <<<<

	Peak Discharge at Composite Outfall	Time to Peak at Composite Outfall
Subarea	(cfs)	(hrs)
10	61	12.3
20	11	12.4
3C	28	12.4
4C	12	12.5
East	533	12.7
Northeast	84	12.5
North	219	12.6
West	145	12.5

Composite Watershed	1027	12.6

Page 3

Return Frequency: 25 years

TR-55 TABULAR HYDROGRAPH METHOD Type 11. Distribution (24 hr. Duration Storm)

Executed: 09-18-2000 12:58:17 Watershed file: --> P:\DATA\PROJECTS\3081\40\SW\POSTDV2 .MOP Hydrograph file: --> P:\DATA\PROJECTS\3081\40\SW\POSTDV25.HYD

Dairyland Power Coop. Feasibility Report PostDevelopment Conditions BJK 5/97 REV 9/98

Composite Hydrograph Summary (cfs)

Subarea	11.0	11.3	11.6	11.9	12.0	12.1	12.2	12.3	12.4
Description	hr	hr	hr	hr	hr	hr	hr	hr	hr
10	1	1	2	5	9	22	43	61	61
20	0	0	0	0	0	1	4	9	11
30	0	0	0	0	1	6	17	27	28
4C	0	0	0	0	0	0	2	6	10
East	9	13	17	25	33	52	102	197	329
Northeast	1	1	2	4	7	14	31	57	80
North	2	3	4	6	8	13	28	66	126
West	3	5	6	11	17	30	56	95	128
•••••	******								
Total (cfs)	16	23	31	51	75	138	283	518	773

Subarea	12.5	12.6	12.7	12.8	13.0	13.2	13.4	13.6	13.8
Description	hr	hr	hr	hr	hr	hr	hr	hr	hr

10	48	34	26	20	13	10	8	7	7
20	10	8	6	5	3	2	2	2	2
30	24	18	13	11	7	6	5	4	4
4C	12	11	9	7	4	3	3	2	2
East	454	527	533	490	350	248	183	143	117
Northeast	84	74	58	45	28	20	16	14	12
North	187	219	217	191	130	86	62	49	41
West	145	136	115	92	58	39	29	24	20
Total (cfs)	964	1027	977	861	593	414	308	245	205

Page 4 Return Frequency: 25 years

TR-55 TABULAR HYDROGRAPH METHOD Type II. Distribution (24 hr. Duration Storm)

Executed: 09-18-2000 12:58:17 Watershed file: --> P:\DATA\PROJECTS\3081\40\SW\POSTDV2 .MOP Hydrograph file: --> P:\DATA\PROJECTS\3081\40\SW\POSTDV25.HYD

Dairyland Power Coop. Feasibility Report PostDevelopment Conditions BJK 5/97 REV 9/98

Subarea	14.0	14.3	14.6	15.0	15.5	16.0	16.5	17.0	17.5
Description	hr								
1C	6	5	5	4	4	4	3	3	3
20	1	1	1	1	1	1	1	1	1
3C	3	3	3	3	2	2	2	2	2
4C	2	2	1	1	1	1	1	1	1
East	98	81	69	59	53	47	42	38	36
Northeast	11	9	8	8	7	6	6	5	5
North	35	30	26	23	21	19	17	16	14
West	18	15	13	12	11	10	9	8	7
Total (cfs)	174	146	126	111	100	90	81	74	69

Subarea	18.0	19.0	20.0	22.0	26.0
Description	hr	hr	hr	hr	hr
10	3	2	2	2	0
20	1	1	1	0	0
3C	2	1	1	1	0
4C	1	1	1	1	0
ast	34	30	27	22	0
Northeast	5	4	4	3	0
North	14	12	10	9	0
West	7	6	5	5	0

Total (cfs)	67	57	51	43	0

Page 1 Return Frequency: 100 years

TR-55 TABULAR HYDROGRAPH METHOD Type II. Distribution (24 hr. Duration Storm)

Executed: 10-01-1998 11:25:28 Watershed file: --> A:\POSTDV2 .MOP Hydrograph file: --> A:\POSTDV00.HYD

> Dairyland Power Coop. Feasibility Report PostDevelopment Conditions BJK 5/97 REV 9/98

>>>> Input Parameters Used to Compute Hydrograph <<<<

Subarea Description	AREA (acres)	CN	Tc (hrs)	* Tt (hrs)	Precip, (in)	1	Runoff (in)	11.000	/p /used
10	42.00	67.0	0.40	0.00	6.10	1	2.61	1.16	.16
20	15.00	56.0	0.30	0.10	6.10	i.	1.66	1.26	.26
30	33.00	58.0	0.40	0.00	6.10	Î.	1.82	1.24	.24
40	16.00	57.0	0.40	0.10	6.10	î.	1.74	1.25	.25
East	520.00	67.0	0.75	0.00	6.10	i	2.61	1.16	.16
Northeast	80.00	63.0	0.40	0.10	6.10	i.	2.25	1.19	.19
North	236.00	63.0	0.50	0.20	6.10	ì.	2.25	1.19	. 19
West	100.00	71.0	0.50	0.10	6.10	i.	2.98	1.13	.13

* Travel time from subarea outfall to composite watershed outfall point.

I -- Subarea where user specified interpolation between Ia/p tables.

Total area = 1042.00 acres or 1.6281 sq.mi Peak discharge = 1618 cfs

WARNING: Drainage areas of two or more subareas differ by a factor of 5 or greater.

>>>> Computer	Modifications	of	Input	Parameters	*****
---------------	---------------	----	-------	------------	-------

Subarea Description	Input Tc (hr)	Values * Tt (hr)	Rounded Tc (hr)	Values * Tt (hr)	la/p Interpolated (Yes/No)	la/p Messages
10	0.35	0.00	0.40	0.00	Yes	
20	0.32	0.05	0.30	0.10	Yes	
3C	0.41	0.01	0.40	0.00	Yes	**
40	0.38	0.09	0.40	0.10	Yes	44.1
East	0.68	0.07	0.75	0.00	Yes	
ortheast	0.37	0.09	0.40	0.10	Yes	
lorth	0.53	0.18	0.50	0.20	Yes	
lest	0.52	0.08	0.50	0.10	Yes	

* Travel time from subarea outfall to composite watershed outfall point.

Total Runoff

= 215.7 ac-ft

Page 2 Return Frequency: 100 years

TR-55 TABULAR HYDROGRAPH METHOD Type II. Distribution (24 hr. Duration Storm)

Executed: 10-01-1998 11:25:28 Watershed file: --> A:\POSTDV2 .MOP Hydrograph file: --> A:\POSTDV00.HYD

> Dairyland Power Coop. Feasibility Report PostDevelopment Conditions BJK 5/97 REV 9/98

>>>> Summary of Subarea Times to Peak <<<<

	Peak Discharge at	Time to Peak at
	Composite Outfall	Composite Outfall
Subarea	(cfs)	(hrs)
***********	*********	
10	96	12.3
20	20	12.4
30	49	12.4
40	20	12.5
East	837	12.6
Northeast	136	12.4
North	360	12.6
West	223	12.5
Composite Watershed	1618	12.6

Page 3 Return Frequency: 100 years

TR-55 TABULAR HYDROGRAPH METHOD Type II. Distribution (24 hr. Duration Storm)

Executed: 10-01-1998 11:25:28 Watershed file: --> A:\POSTDV2 .MOP Hydrograph file: --> A:\POSTDV00.KYD

Dairyland Power Coop, Feasibility Report PostDevelopment Conditions BJK 5/97 REV 9/98

Composite Hydrograph Summary (cfs)

	Subarea Description	11.0 hr	11.3 hr	11.6 hr	11.9 hr	12.0 hr	12.1 hr	12.2 hr	12.3 hr	12.4 hr	
	10	2	3	4	9	18	38	71	96	94	
	20	0	0	0	1	2	4	10	18	20	
	3C	1	1	1	2	6	15	33	48	49	
	40	0	0	0	1	1	3	7	13	19	
	East	19	27	36	53	69	105	190	343	547	
	Northeast	3	4	5	10	18	36	70	109	136	
Y	North	6	9	11	17	22	33	63	127	224	
ŀ	West	6	9	12	20	32	56	102	165	209	
	Total (cfs)	37	53	69	113	168	290	546	919	1298	

Subarea Description	12.5	12.6	12.7	12.8	13.0	13.2	13.4	13.6	13.8
Description	hr								
c	73	51	38	29	19	14	12	10	0
C	18	13	10	7	5	4	3	3	3
C	39	28	21	17	11	9	7	6	6
C	20	18	14	11	7	5	4	3	3
ast	733	837	830	756	531	370	270	208	168
ortheast	132	110	85	65	40	28	23	19	17
orth	315	360	350	303	200	130	92	71	59
est	223	201	163	128	79	53	40	32	27
otal (cfs)	1553	1618	1511	1316	892	613	451	352	292

Page 4 Return Frequency: 100 years

TR-55 TABULAR HYDROGRAPH METHOD Type II. Distribution (24 hr. Duration Storm)

Executed: 10-01-1998 11:25:28 Watershed file: --> A:\POSTDV2 .MOP Hydrograph file: --> A:\POSTDV00.HYD

Dairyland Power Coop. Feasibility Report PostDevelopment Conditions BJK 5/97 REV 9/98

Composite Hydrograph Summary (cfs)

Subarea	14.0	14.3	14.6	15.0	15.5	16.0	16.5	17.0	17.5
Description	hr								
10	8	7	7	6	5	5	4	4	4
20	2	2	2	2	1	1	1	1	1
3C	5	5	4	4	3	3	3	3	2
40	3	2	2	2	2	2	1	1	1
East	141	115	97	83	74	66	59	53	49
Northeast	15	13	12	11	10	9	8	7	7
North	51	44	38	33	30	27	24	22	20
West	24	21	18	16	14	13	12	11	10
Total (cfs)	249	209	180	157	139	126	112	102	94

Subarea	18.0	19.0	20.0	22.0	26.0	
Description	hr	hr	hr	hr	hr	
10	4	3	3	2	0	
2C	1	1	1	1	0	
3C	2	2	2	2	0	
÷C	1	1	1	1	0	
ast	47	42	37	30	0	
lortheast	6	6	5	4	0	
lorth	19	17	15	13	0	
lest	10	8	7	6	0	

otal (cfs)	90	80	71	59	0	

Data directory: p:\data\projects\3081\40\sw*.HYD

File Summary for Composite Hydrograph

Time	POSTDV25	BSN1OUT1	BSN2OUT1	TPTPST25	
(hrs)	(cfs)	(cfs)	(cfs)	(Total)	
*******	*******		*******		
11.00	16.0	0.0	0.0	16.0	
11.10	18.0	0.2	0.2	18.4	
11.20	21.0	0.2	0.2	21.4	
11.30	23.0	0.3	0.2	23.5	
11.40	26.0	0.3	0.2	26.5	
11.50	28.0	0.3	0.2	28.5	
11.60	31.0	0.4	0.2	31.6	
11.70	38.0	0.4	0.3	38.7	
11.80	44.0	0.4	0.3	44.7	
11.90	51.0	0.5	0.3	51.8	
12.00	75.0	0.5	0.4	75.9	
12.10	138.0	0.6	0.4	139.0	
12.20	283.0	0.6	0.5	284.1	
12.30	518.0	0.7	0.5	519.2	
12.40	773.0	0.7	0.5	774.2	
12.50	964.0	0.7	0.6	965.3	245
12.60	1027.0	0.7	0.6	1028.3 🗻	Peak
12.70	977.0	0.7	0.6	978.3	
12.80	861.0	0.7	0.6	862.3	
12.90	727.0	0.7	0.6	728.3	
13.00	593.0	0.8	0.6	594.3	
13.10	503.0	0.8	0.6	504.4	
13.20	414.0	0.8	0.6	415.4	
13.30	361.0	0.8	0.6	362.4	
13.40	308.0	0.8	0.6	309.4	
13.50	277.0	0.8	0.6	278.4	
13.60	245.0	0.8	0.6	246.4	
13.70	225.0	0.8	0.6	226.4	
13.80	205.0	0.8	0.6	206.4	
13.90	190.0	0.8	0.6	191.4	
14.00	174.0	0.8	0.6	175.4	
14.10	165.0	0.8	0.6	166.4	
14.20	155.0	0.8	0.6	156.4	
14.30	146.0	0.9	0.6	147.5	
14.40	139.0	1.2	0.6	140.8	
14.50	133.0	1.5	0.6	135.1	
14.60	126.0	1.8	0.6	128.4	
14.70	122.0	2.0	0.6	124.6	
14.80	118.0	2.2	0.6	120.8	
14.90	115.0	2.3	0.6	117.9	

Combined Post - Development

Hydrograph 25 yr storm

Basin 1 + Basin Z +

Surrounding watershed .

Data directory: p:\data\projects\3081\40\sw*.HYD

Time	POSTDV25	BSN10UT1	BSN2OUT1	TPTPST25
(hrs)	(cfs)	(cfs)	(cfs)	(Total)
*******				*******
15.00	111.0	2.4	0.6	114.0
15.10	109.0	2.5	0.6	112.1
15.20	107.0	2.6	0.6	110.2
15.30	104.0	2.7	0.6	107.3
15.40	102.0	2.7	0.6	105.3
15.50	100.0	2.8	0.6	103.4
15.60	98.0	2.8	0.6	101.4
15.70	96.0	2.8	0.6	99.4
15.80	94.0	2.9	0.6	97.5
15.90	92.0	2.9	0.6	95.5
16.00	90.0	2.9	0.6	93.5
16.10	88.0	2.9	0.6	91.5
16.20	86.0	2.9	0.6	89.5
16.30	85.0	2.9	0.6	88.5
16.40	83.0	2.7	0.6	86.3
16.50	81.0	2.6	0.6	84.2
16.60	80.0	2.5	0.6	83.1
16.70	78.0	2.4	0.6	81.0
16.80	77.0	2.3	0.6	79.9
16.90	75.0	2.3	0.6	77.9
17.00	74.0	2.2	0.6	76.8
17.10	73.0	2.2	0.6	75.8
17.20	72.0	2.2	0.6	74.8
17.30	71.0	2.1	0.6	73.7
17.40	70.0	2.1	0.6	72.7
17.50	69.0	2.1	0.6	71.7
17.60	69.0	2.1	0.6	71.7
17.70	68.0	2.1	0.6	70.7
17.80	68.0	2.0	0.6	70.7
17.90	67.0	2.0	0.6	69.6
18.00	67.0	2.0	0.6	69.6
18.10	66.0	2.0	0.6	68.6
18.20	65.0	2.0	0.6	67.6
18.30	64.0	2.0	0.6	66.6
18,40	63.0	2.0	0.6	65.6
18.50	62.0	2.0	0.6	64.6
18,60	61.0	2.0	0.6	63.6
18,70	60.0	2.0	0.6	62.6
18.80	59.0	2.0	0.7	61.7
18.90	58.0	2.0	0.7	60.8
19.00	57.0	2.0	0.8	59.8

-

Executed 09-18-2000 13:11:11

Data directory: p:\data\projects\3081\40\sw*.HYD

Time			BSN10UT1	BSN2OUT1	TPTPST25
(hrs	:)	(cfs)	(cfs)	(cfs)	(Total)
			*******	*******	
19.		56.0	2.0	0.8	58.8
19.		56.0	2.0	0.9	58.9
19.		55.0	2.0	0.9	57.9
19.		55.0	2.0	0.9	57.9
19.		54.0	2.0	0.9	56.9
19.	60	53,0	1.9	0.9	55.9
19.	70	53.0	1.8	0.9	55.7
19.	80	52,0	1.6	1.0	54.6
19.	90	52.0	1.5	1.0	54.5
20.	00	51.0	1.4	1.0	53.4
20.	10	51.0	1.4	1.0	53.3
20.	20	50.0	1.3	1.0	52.3
20.	30	50.0	1.2	1.0	52.2
20.	40	49.0	1.2	1.0	51.2
20.	50	49.0	1.2	1.0	51.2
20.	60	49.0	1.1	1.0	51.1
20.	70	48.0	1.1	1.0	50.1
20.	80	48.0	1.1	1.0	50.1
20.	90	47.0	1.1	1.0	49.1
21.	00	47.0	1.0	1.0	49.0
21.	10	47.0	0.8	1.0	48.8
21.	20	46.0	0.8	1.0	47.8
21.3	30	46.0	0.8	1.0	47.8
21.4	40	45.0	0.8	1.0	46.8
21.5	50	45.0	0.8	1.0	46.8
21.0	50	45.0	0.8	1.0	46.8
21.7	70	44.0	0.8	1.0	45.8
21.8	80	44.0	0.8	1.0	45.8
21.9	90	43.0	0.8	1.0	44.8
22.0	00	43.0	0.8	1.0	44.8
22.	10	42.0	0.8	1.0	43.8
22.2	20	41.0	0.8	1.0	42.8
22.3	30	40.0	0.8	1.0	41.8
22.4	40	39.0	0.8	1.0	40.8
22.5	50	38.0	0.8	1.0	39.8
22.6	50	37.0	0.8	1.0	38.8
22.7	70	35.0	0.8	1.0	36.8
22.8		34.0	0.8	1.0	35.8
22.5	20	33.0	0.8	1.0	34.8
23.0		32.0	0.8	1.0	33.8
23.1		31.0	0.8	1.0	32.8

Data directory: p:\data\projects\3081\40\sw*.HYD

Time	POSTDV25	BSN10UT1	BSN2OUT1	TPTPST25	
(hrs)	(cfs)	(cfs)	(cfs)	(Total)	
23.20	30.0	0.8	1.0	31.8	
23.30	29.0	0.8	1.0	30.8	
23.40	28.0	0.8	1.0	29.8	
23.50	27.0	0.8	1.0	28.8	
23.60	26.0	0.8	1.0	27.8	
23.70	25.0	0.8	1.0	26.8	
23.80	24.0	0.8	1.0	25.8	
23.90	23.0	0.8	1.0	24.8	
24.00	22.0	0.8	0.9	23.7	
24.10	20.0	0.8	0.7	21.5	
24.20	19.0	0.8	0.6	20.4	
24.30	18.0	0.8	0.6	19.4	
24.40	17.0	0.8	0.6	18.4	
24.50	16.0	0.8	0.6	17.4	
24.60	15.0	0.8	0.6	16.4	
24.70	14.0	0.8	0.6	15.4	
24.80	13.0	0.8	0.6	14.4	
24.90	12.0	0.8	0.6	13.4	
25.00	11.0	0.8	0.6	12.4	
25.10	10.0	0.8	0.6	11.4	
25.20	9.0	0.8	0.6	10.4	
25.30	8.0	0.8	0.6	9.4	
25.40	6.0	0.8	0.6	7.4	
25.50	5.0	0.8	0.6	6.4	

Data directory: p:\data\projects\3081\40\sw*.HYD

File Summary for Composite Hydrograph

Time	POSTDV00	BSN10UT2	BSN2OUT2	TOTPSTOO
(hrs)	(cfs)	(cfs)	(cfs)	(Total)
*******	*******			
11.00	37.0	0.0	0.0	37.0
11.10	42.0	0.2	0.2	42.4
11.20	48.0	0.3	0.2	48.5
11.30	53.0	0.3	0.2	53.5
11.40	58.0	0.4	0.3	58.6
11.50	64.0	0.4	0.3	64.7
11.60	69.0	0.4	0.3	69.7
11.70	84.0	0.4	0.3	84.7
11.80	98.0	0.5	0.3	98.8
11.90	113.0	0.5	0.4	113.9
12.00	168.0	0.6	0.4	169.0
12.10	290.0	0.6	0.5	291.1
12.20	546.0	0.7	0.5	547.2
12.30	919.0	0.7	0.6	920.3
12.40	1298.0	0.7	0.6	1299.3
12.50	1553.0	0.8	0.6	1554.4
12.60	1618.0	2.8	1.2	1622.0 - Peak
12.70	1511.0	8.2	3.7	1522.9
12.80	1316.0	12.2	5.2	1333.4
12.90	1104.0	14.8	6.1	1124.9
13.00	892.0	15.7	6.6	914.3
13.10	752.0	15.5	6.9	774.4
13.20	613.0	14.8	7.0	634.8
13.30	532.0	14.0	7.0	553.0
13.40	451.0	13.3	7.0	471.3
13.50	402.0	12.5	7.0	421.5
13.60	352.0	11.7	6.9	370.6
13.70	322.0	10.8	6.7	339.5
13.80	292.0	10.0	6.6	308.6
13.90	270.0	9.6	6.5	286.0
14.00	249.0	9.1	6.3	264.3
14.10	236.0	8.5	6.0	250.6
14.20	222.0	8.1	5.8	235.9
14.30	209.0	7.7	5.7	222.4
14.40	199.0	7.4	5.4	211.9
14.50	190.0	7.2	5.2	202.3
14.60	180.0	7.0	4.8	191.8
14.70	174.0	6.8	4.5	185.3
14.80	168.0	6.6	4.2	178.8
14.90	163.0	6.2	4.0	173.2

Combined Post - Development

Hydrograph - 100 yr storm

Basin 1 + Basin 2 + Surrounding Watershed.

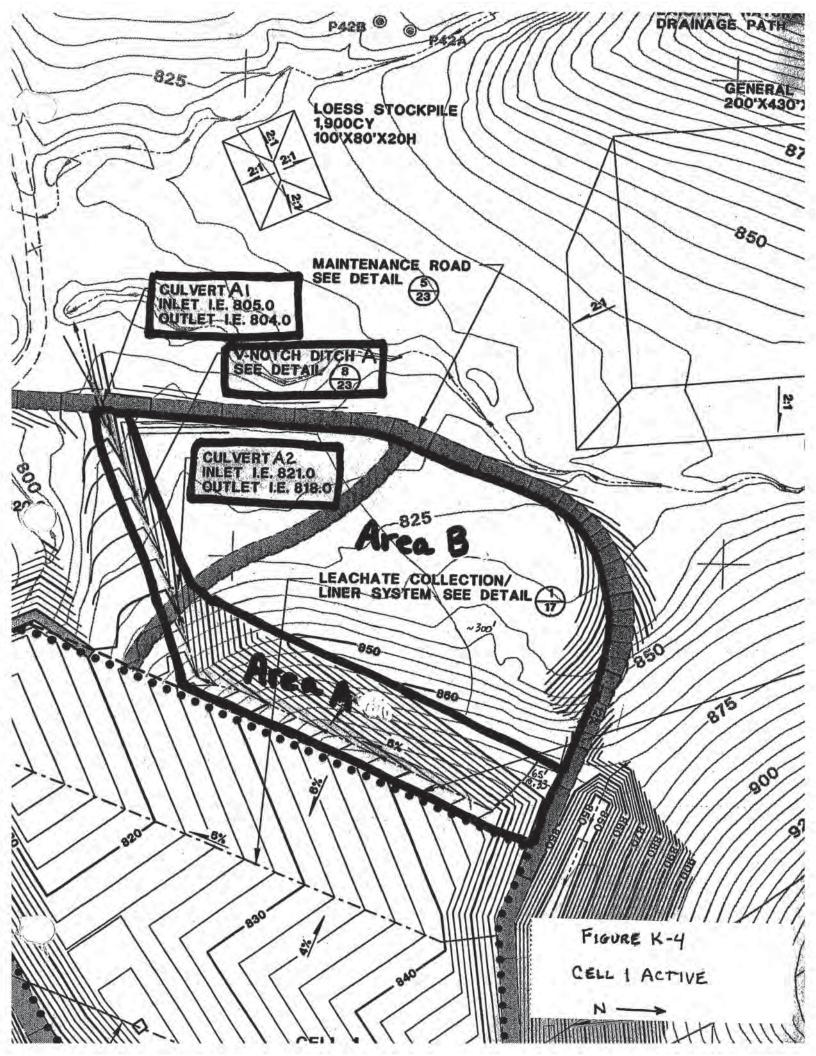
Data directory: p:\data\projects\3081\40\sw*.HYD

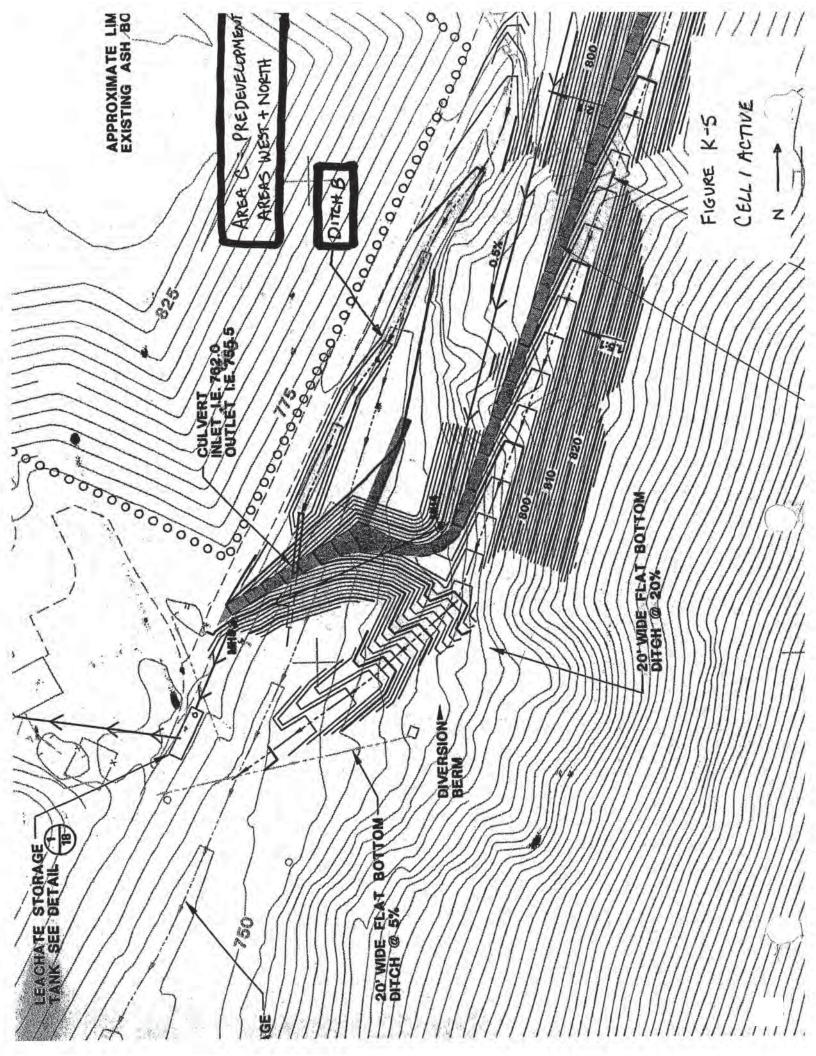
Time	POSTDV00	BSN10UT2		TOTPSTOO
(hrs)	(cfs)	(cfs)	(cfs)	(Total)
15.00	157.0	5.8	3.8	166.6
15.10	153.0	5.5	3.6	162.1
15.20	150.0	5.3	3.5	158.8
15.30	146.0	5.0	3.4	154.4
15.40	143.0	4.6	3.3	150.9
15.50	139.0	4.3	3.3	146.6
15.60	136.0	4.1	3.2	143.3
15,70	134.0	3.9	3.2	141.1
15.80	131.0	3.8	3.1	137.9
15.90	129.0	3.6	3.1	135.7
16.00	126.0	3.5	3.1	132.6
16.10	123.0	3.4	3.1	129.5
16.20	120.0	3.4	3.1	126.4
16.30	118.0	3.3	3.0	124.2
16.40	115.0	3.2	2.8	121.0
16.50	112.0	3.2	2.6	117.8
16.60	110.0	3.2	2.5	115.7
16.70	108.0	3.1	2.4	113.5
16.80	106.0	3.1	2.3	111.4
16.90	104.0	3.1	2.3	109.3
17.00	102.0	3.1	2.2	107.3
17.10	100.0	3.1	2.2	105.2
17.20	99.0	3.0	2.1	104.2
17.30	97.0	3.0	2.1	102.2
17.40	96.0	3.0	2.1	101.1
17.50	94.0	3.0	2.1	99.1
17.60	93.0	3.0	2.1	98.1
17.70	92.0	3.0	2.0	97.1
17.80	92.0	3.0	2.0	97.1
17.90	91.0	3.0	2.0	96.0
18.00	90.0	3.0	2.0	95.0
18.10	89.0	3.0	2.0	94.0
18.20	88.0	3.0	2.0	93.0
18.30	87.0	3.0	2.0	92.0
18.40	86.0	3.0	2.0	91.0
18.50	85.0	2.9	2.0	89.9
18.60		2.8	2.0	88.8
18.70	83.0	2.6	2.0	87.6
18.80	82.0	2.5	2.0	86.5
18.90	81.0	2.4	2.0	85.4
19.00	80.0	2.4	2.0	84.4

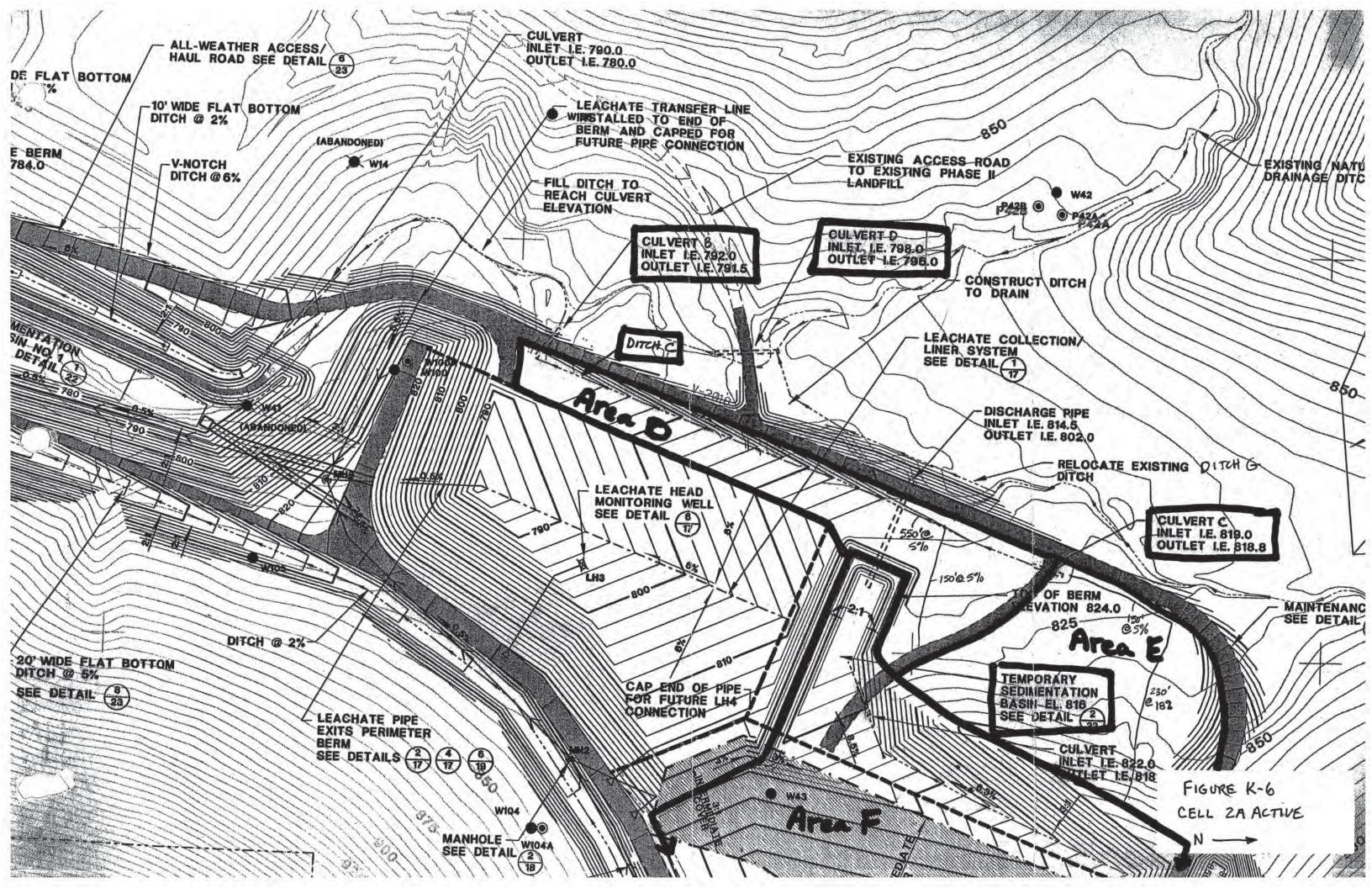
Data directory: p:\data\projects\3081\40\sw*.HYD

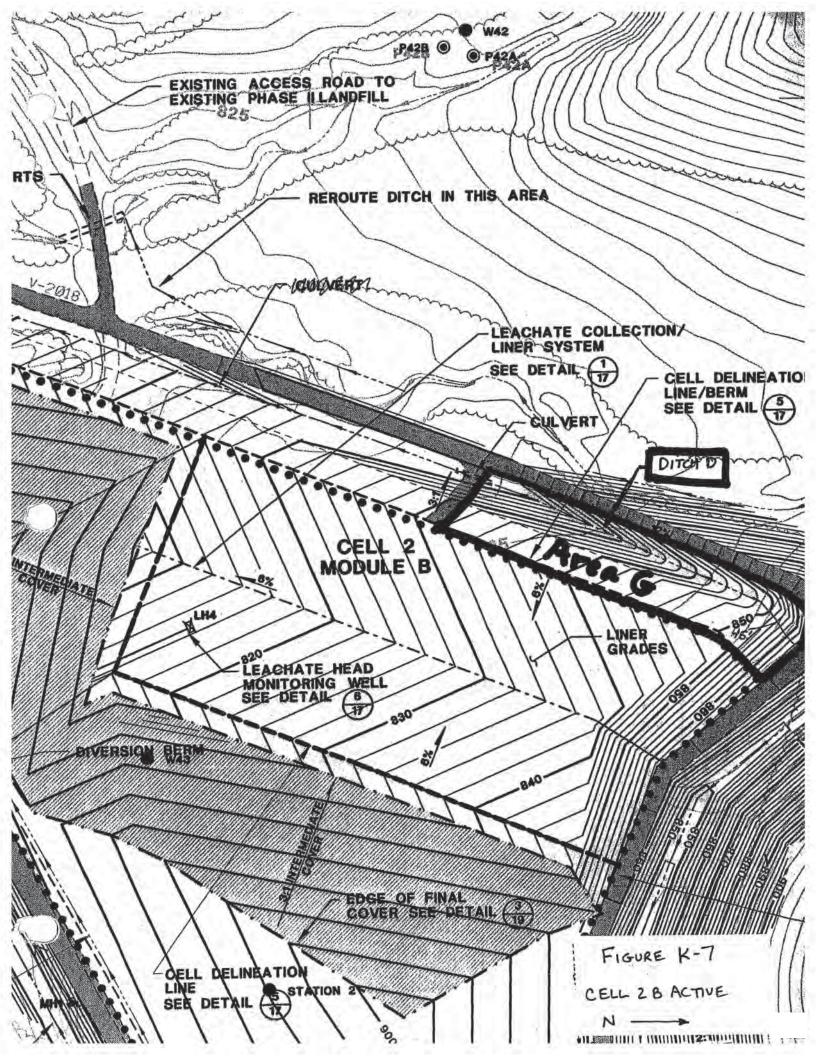
Time	POSTDVOO	BSN10UT2	BSN2OUT2	TOTPSTOO
(hrs)	(cfs)	(cfs)	(cfs)	(Total)

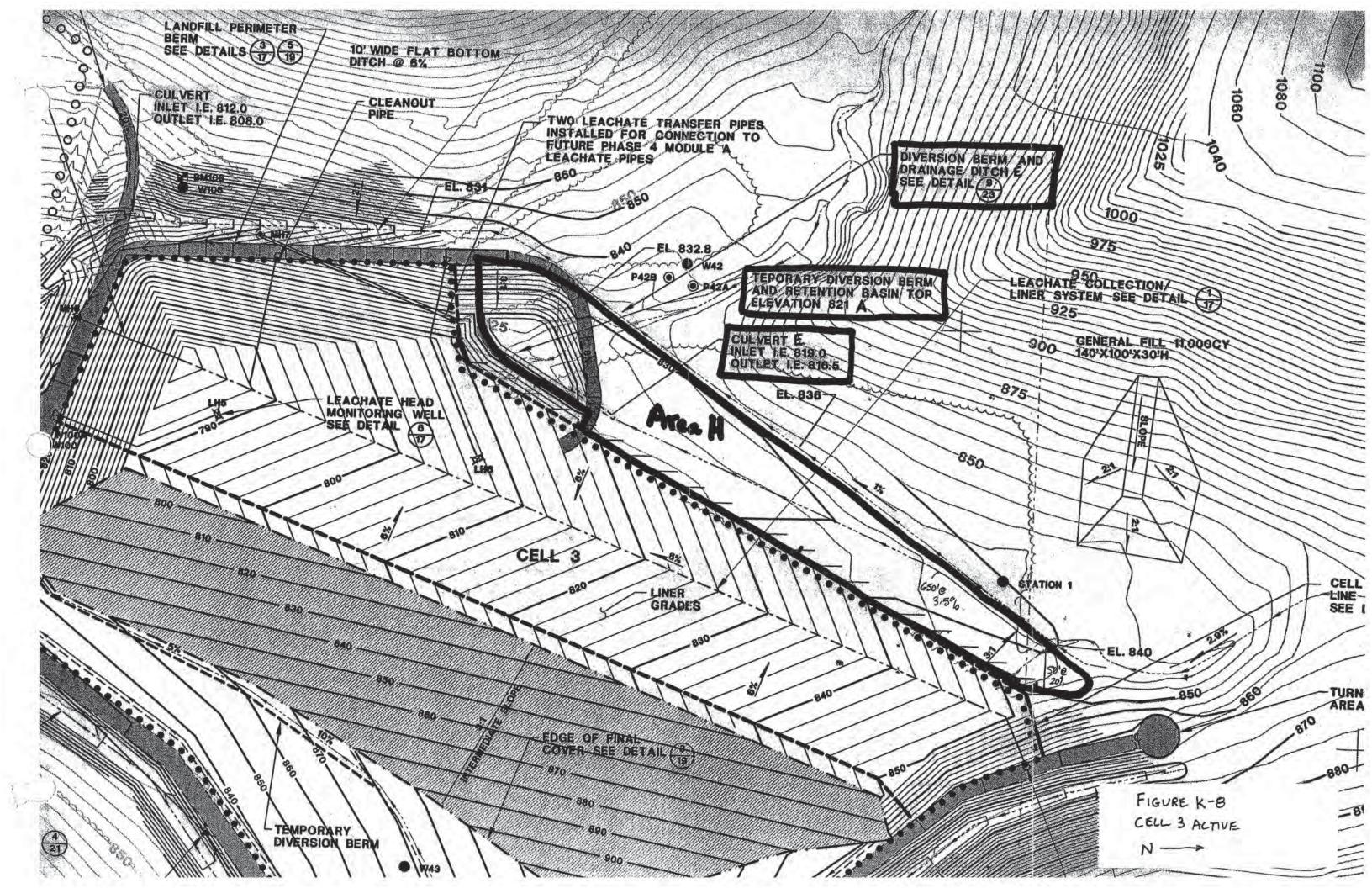
19.10	79.0	2.3	2.0	83.3
19.20	78.0	2.2	2.0	82.2
19.30	77.0	2.2	2.0	81.2
19.40	76.0	2.2	2.0	80.2
19.50	76.0	2.1	2.0	80.1
19.60	75.0	2.1	1.9	79.0
19.70	74.0	2.1	1.7	77.8
19.80	73.0	2.1	1.6	76.7
19.90	72.0	2.1	1.5	75.5
20.00	71.0	2.0	1.4	74.4
20.10	70.0	2.0	1.3	73.3
20.20	70.0	2.0	1.3	73.3
20,30	69.0	2.0	1.2	72.2
20.40	69.0	2.0	1.2	72.2
20.50	68,0	2.0	1.1	71.1
20.60	67.0	2.0	1.1	70.1
20.70	67.0	2.0	1.1	70.1
20.80	66.0	2.0	1.1	69.1
20.90	66.0	2.0	1.0	69.1
21.00	65.0	2.0	1.0	68.1
21.10	64.0	2.0	1.0	67.0
21.20	64.0	2,0	1.0	67.0
21.30	63.0	2,0	1.0	66.0
21.40	63.0	2.0	1.0	66.0
21.50	62.0	2.0	1.0	65.0
21.60		2.0	1.0	64.0
21.70	61.0	2.0	1.0	64.0
21.80		2.0	1.0	63.0
21.90	60.0	2.0	1.0	63.0
22.00	59.0	2.0	1.0	62.0
22.10		2.0	1.0	61.0
22.20	56.0	2.0	1.0	59.0
22.30	55.0	2.0	1.0	58.0
22.40	52.0	2.0	1.0	56.0
22.50	52.0	2.0	1.0	55.0
22.60	50.0	2.0	1.0	53.0
22.70	49.0	2.0	1.0	52.0
22.80	47.0	2.0	1.0	50.0
22.90	46.0	2.0	1.0	49.0
23.00	44.0	2.0	1.0	47.0
23.10	43.0	1.9	1.0	45.9

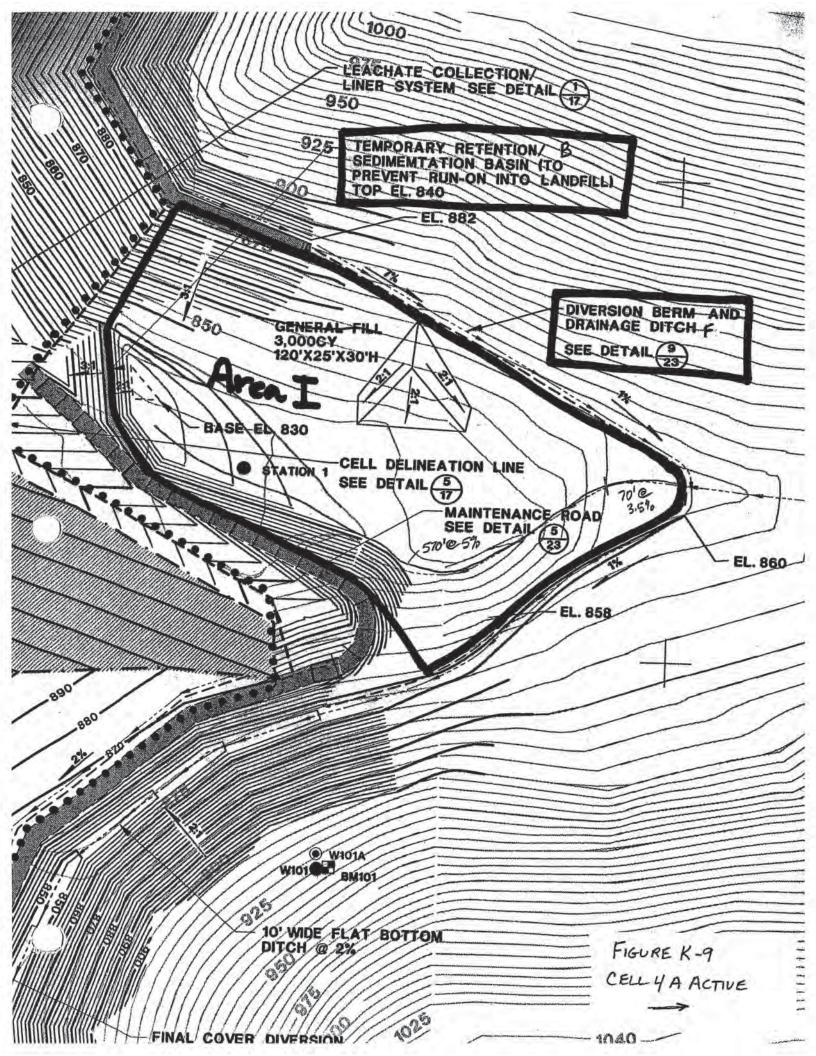

Data directory: p:\data\projects\3081\40\sw*.HYD


Time	POSTDV00	BSN10UT2	BSN2OUT2	TOTPSTOO	
(hrs)	(cfs)	(cfs)	(cfs)	(Total)	
23.20	41.0	1.8	1.0	43.8	
23.30	40.0	1.6	1.0	42.6	
23.40	38.0	1.5	1.0	40.5	
23.50	37.0	1.4	1.0	39.4	
23.60	35,0	1.4	1.0	37.3	
23.70	34.0	1.3	1.0	36.3	
23.80	32.0	1.2	1.0	34.2	
23.90	31.0	1.2	1.0	33.2	
24.00	30.0	1.2	0.9	32.1	
24.10	28.0	1.1	0.7	29.9	
24.20	27.0	1.1	0.6	28.7	
24.30	25.0	1.1	0.6	26.7	
24.40	24.0	1.1	0.6	25.7	
24.50	22.0	1.1	0.6	23.7	
24.60	21.0	1.0	0.6	22.6	
24.70	19.0	1.0	0.6	20.6	
24.80	18.0	1.0	0.6	19.6	
24.90	16.0	1.0	0.6	17.6	
25.00	15.0	0.9	0.6	16.5	
25.10	13.0	0.8	0.6	14.4	
25.20	12.0	0.8	0.6	13.4	
25.30	10.0	0.8	0.6	11.4	
25.40	9.0	0.8	0.6	10.4	
25.50	7.0	0.8	0.6	8.4	




Operational Run-off Calculations


Dairyland Power Cooperative Run-On and Run-Off Control System Plan Alma Offsite Disposal Facility, Phase IV Landfill, Alma, Wisconsin



> SUMMARY SHEET FOR Tc or Tt COMPUTATIONS (Solved for Time using TR-55 Methods)

> > Dairyland Power Coop. Plan of Operation Operational Conditions

Subarea descr.	Tc or Tt	Time (hrs)

Area A	Tc	0.08
Area B	Tc	0.21
Area D	Tc	0.06 - Round to 0.10
Area E	Tc	0.15
Area F	Tc	0.24
Area G	Tc	0.05 - Rourd to 0.10
Area H	Tc	0.10
Area I	Tc	0.15

Dairyland Power Coop. Plan of Operation Operational Conditions

Tc COMPUTATIONS FOR: Area A

SHEET FLOW (Applicable to Tc only)				-
Segment ID		1		
Surface description	gras	55		
Manning's roughness coeff., n		0.1500		
Flow length, L (total < or = 300)	ft	65.0		
Two-yr 24-hr rainfall, P2	in	2.800		
Land slope, s	ft/ft	0.3330		
0.8				
.007 * (n*L)				
T =	hrs	0.04	-	0.04
0.5 0.4				
P2 * s				
SHALLOW CONCENTRATED FLOW				
Segment ID		2		
Surface (paved or unpaved)?		Unpaved		
Flow Length, L	ft	625.0		
Watercourse slope, s	ft/ft	0.0600		
0.5		7 0504		
Avg.V = Csf * (s)	ft/s	3.9521		
where: Unpaved Csf = 16.1345				
Paved Csf = 20.3282				
T = L / (3600*V)	hrs	0.04	-	0.04
CHANNEL FLOW				
Segment ID				
Cross Sectional Flow Area, a	sq.ft	0.00		
Wetted perimeter, Pw	sy.rt ft			
Hydraulic radius, r = a/Pw	ft			
Channel slope, s	ft/ft	0.0000		
Manning's roughness coeff., n	11/11			
Maining's roughness coerr., n		0.000		
2/3 1/2				
1.49 * r * s				
V =	ft/s	0.0000		
n				
Flow length, L	ft	0		
T = L / (3600*V)	hrs	0.00	-	0.00
				5100
mannannannannann				umm
		TOTAL TIME (hr	s)	0.08

Dairyland Power Coop. Plan of Operation Operational Conditions

Tc COMPUTATIONS FOR: Area B

SHEET FLOW (Applicable to Tc only) Segment ID			
		1	
Surface description	gras		
Manning's roughness coeff., n		0.1500	
Flow length, L (total < or = 300)		300.0	
Two-yr 24-hr rainfall, P2	in	2.800	
Land slope, s	ft/ft	0.1700	
0.8			
.007 * (n*L) T =			
0.5 0.4	hrs	0.18	= 0.18
P2 * s			
HALLOW CONCENTRATED FLOW			
Segment ID		2	
Surface (paved or unpaved)?		Unpaved	
Flow length, L	ft	220.0	
Watercourse slope, s	ft/ft	0.0200	
0.5			
Avg.V = Csf * (s)	ft/s	2.2818	
where: Unpaved Csf = 16.1345			
Paved Csf = 20.3282			
T = L / (3600*V)	hrs	0.03	= 0.03
HANNEL FLOW			
Segment ID			
Cross Sectional Flow Area, a	sq.ft	0.00	
Wetted perimeter, Pw	ft	0.00	
Hydraulic radius, r = a/Pw	ft	0.000	
Channel slope, s	ft/ft	0.0000	
Manning's roughness coeff., n		0.0000	
2/3 1/2			
1.49 * r * s			
V =	ft/s	0.0000	
n			
Flow length, L	ft	0	
T = L / (3600*V)	hrs	0.00	= 0.00

Dairyland Power Coop. Plan of Operation Operational Conditions

Tc COMPUTATIONS FOR: Area D

HEET FLOW (Applicable to Tc only) Segment ID					
		1			
Surface description	soil				
Manning's roughness coeff., n Flow length, L (total < or = 300)		0.0110			
		150.0			
Two-yr 24-hr rainfall, P2	in				
Land slope, s	ft/ft	0.0500			
0.8					
.007 * (n*L)					
1 =	hrs	0.02		=	0.02
0.5 0.4					
P2 * s					
HALLOW CONCENTRATED FLOW					
Segment ID		2			
Surface (paved or unpaved)?		Unpaved			
Flow length, L	ft	550.0			
Watercourse slope, s	ft/ft	0.0500			
0.5					
Avg.V = Csf * (s)	ft/s	3.6078			
where: Unpaved Csf = 16.1345					
Paved Csf = 20.3282					
T = L / (3600*V)	hrs	0.04		-	0.04
none com					
HANNEL FLOW					
Segment ID					
Cross Sectional Flow Area, a	sq.ft	0.00			
Wetted perimeter, Pw	ft	0.00			
Hydraulic radius, r = a/Pw	ft	0.000			
Channel slope, s	ft/ft	0.0000			
Manning's roughness coeff., n		0.0000			
2/3 1/2					
1.49 * r * s					
V =	ft/s	0.0000			
n					
Flow Length, L	ft	0			
		5. Sec.			35.1
T = L / (3600*V)	hrs	0.00		=	0.00
inanananananananan		mmm		(11)	mm
		TOTAL TI	ME (hrs)		0.06

Dairyland Power Coop. Plan of Operation Operational Conditions

Tc COMPUTATIONS FOR: Area E

Contrast, period of the provide the local states of the					\sim
SHEET FLOW (Applicable to Tc only)		100			
Segment ID	. Saint	1			
Surface description Manning's roughness coeff., n	gras				
Flow length, L (total < or = 300)		0.1500			
Two-yr 24-hr rainfall, P2) ft in	230.0			
Land slope, s	ft/ft	2.800			
0.8	10/10	0.1000			
.007 * (n*L)					
T =	hrs	0.14		= 0.14	
0.5 0.4	111.5	0.14		- 0.14	
P2 * s					
SHALLOW CONCENTRATED FLOW					
Segment ID		2			
Surface (paved or unpaved)?		Unpaved			
Flow length, L	ft	150.0			
Watercourse slope, s	ft/ft				
	1.0/10.	0.0500			
0.5					
Avg.V = Csf * (s)	ft/s	3.6078			
where: Unpaved Csf = 16.1345					
Paved Csf = 20.3282					
T = L / (3600*V)	hrs	0.01	n l'i q	= 0.01	
CHANNEL FLOOR					
CHANNEL FLOW Segment ID					
Cross Sectional Flow Area, a		0.00			
Wetted perimeter, Pw	sq.ft ft	0.00			
Hydraulic radius, r = a/Pw	ft	0.000			
Channel slope, s	ft/ft	0.0000			
Manning's roughness coeff., n	11/11	0.0000			
hanning a roughicaa coerrey n		0.0000			
2/3 1/2					
1.49 * r * s					
V =	ft/s	0.0000			
n					
Flow length, L	ft	0			

Dairyland Power Coop. Plan of Operation Operational Conditions

Tc COMPUTATIONS FOR: Area F

SHEET FLOW (Applicable to Tc only)				
Segment ID		Q		
Surface description	gras			
Manning's roughness coeff., n		0.1500		
Flow length, L (total $< \text{ or } = 300$)	ft	185.0		
Two-yr 24-hr rainfall, P2	în	2.800		
Land slope, s	ft/ft	0.2500		
0.8				
.007 * (n*L)				
T =	hrs	0.10	=	0.10
0.5 0.4				
P2 * s				
SHALLOW CONCENTRATED FLOW				
Segment ID		2		
Surface (paved or unpaved)?		Unpaved		
Flow Length, L	ft	1370.0		
Watercourse slope, s	ft/ft	0.0300		
0.5				
Avg.V = Csf * (s)	ft/s	2.7946		
where: Unpaved Csf = 16.1345				
Paved Csf = 20.3282				
T = L / (3600*V)	hrs	0.14	1.4	0.14
CHANNEL FLOW				
Segment ID				
Cross Sectional Flow Area, a	sq.ft	0.00		
Wetted perimeter, Pw	ft	0.00		
Hydraulic radius, r = a/Pw	ft	0.000		
Channel slope, s	ft/ft	0.0000		
Manning's roughness coeff., n		0,0000		
2/3 1/2				
1.49 * r * s				
V =	ft/s	0.0000		
n				
Flow length, L	ft	0		
T = L / (3600*V)	hrs	0.00		0.00
			(ME (hrs)	0.24

Dairyland Power Coop. Plan of Operation Operational Conditions

Tc COMPUTATIONS FOR: Area G

SHEET FLOW (Applicable to Tc only)				
Segment ID		1		
Surface description	gras	ss		
Manning's roughness coeff., n		0.1500		
Flow length, L (total < or = 300)	ft	45.0		
Two-yr 24-hr rainfall, P2	in	2.800		
Land slope, s	ft/ft	0.3300		
0.8				
.007 * (n*L)				
T =	hrs	0.03	1	0.03
0.5 0.4				
P2 * s				
SHALLOW CONCENTRATED FLOW				
Segment ID		2		
Surface (paved or unpaved)?		Unpaved		
Flow length, L	ft	320.0		
Watercourse slope, s	ft/ft	0.1200		
0.5				
Avg.V = Csf * (s)	ft/s	5.5892		
where: Unpaved Csf = 16.1345				
Paved Csf = 20.3282				
T = L / (3600*V)	hrs	0.02	4.174	0.02
HANNEL FLOW				
Segment ID	5 - E .	6.52		
Cross Sectional Flow Area, a	sq.ft	0.00		
Wetted perimeter, Pw	ft	0.00		
Hydraulic radius, r = a/Pw	ft	0.000		
Channel slope, s	ft/ft			
Manning's roughness coeff., n		0.0000		
2/3 1/2				
1.49 * r * s	1205	3.24.11		
V =	ft/s	0.0000		
n				
Flow length, L	ft	0		
T = L / (3600*V)	hrs	0.00		0.00

Dairyland Power Coop. Plan of Operation Operational Conditions

Tc COMPUTATIONS FOR: Area H

SHEET FLOW (Applicable to Tc only) Segment ID				
Surface description				
Manning's roughness coeff., n	gras	0.1500		
Flow length, L (total < or = 300)	ft			
Two-yr 24-hr rainfall, P2	in	2.800		
Land slope, s	ft/ft	0.2000		
0.8	14/14	0.2000		
.007 * (n*L)				
T =	hrs	0.04		0.04
0.5 0.4	in a	0.04	-	0.04
P2 * s				
SHALLOW CONCENTRATED FLOW				
Segment ID		2		
Surface (paved or unpaved)?		Unpaved		
Flow length, L	ft	650.0		
Watercourse slope, s	ft/ft	0.0350		
0.5				
Avg.V = Csf * (s)	ft/s	3.0185		
where: Unpaved Csf = 16.1345				
Paved Csf = 20.3282				
T = L / (3600*V)	hrs	0.06		0.06
CHANNEL FLOW				
Segment ID				
Cross Sectional Flow Area, a	sq.ft	0.00		
Wetted perimeter, Pw	sq.it ft	0.00		
Hydraulic radius, r = a/Pw	ft			
Channel slope, s	ft/ft			
Manning's roughness coeff., n	10/10	0.0000		
naming a rodginica coerry in		0.0000		
2/3 1/2				
1.49 * r * s				
V =	ft/s	0.0000		
n		0.00		
Flow length, L	ft	0		
T = L / (3600*V)	hrs	0.00	-	0.00

Dairyland Power Coop. Plan of Operation Operational Conditions

Tc COMPUTATIONS FOR: Area I

SHEET FLOW (Applicable to Tc only)			
Segment ID		1	
Surface description	gras		
Manning's roughness coeff., n		0.1500	
Flow length, L (total < or = 300)	ft	70.0	
Two-yr 24-hr rainfall, P2	în	2.800	
Land slope, s	ft/ft	0.0350	
0.8			
.007 * (n*L)			
T =	hrs	0.10	= 0.10
0.5 0.4			
P2 * s			
SHALLOW CONCENTRATED FLOW			
Segment ID		2	
Surface (paved or unpaved)?		Unpaved	
Flow length, L	ft	570.0	
Watercourse slope, s	ft/ft	0.0500	
0.5			
Avg.V = Csf * (s)	ft/s	3.6078	
where: Unpaved Csf = 16.1345			
Paved Csf = 20.3282			
T = L / (3600*V)	hrs	0.04	= 0.04
annual and an			
CHANNEL FLOW			
Segment ID			
Cross Sectional Flow Area, a	sq.ft	0.00	
Wetted perimeter, Pw	ft	0.00	
Hydraulic radius, r = a/Pw	ft	0.000	
Channel slope, s	ft/ft	0.0000	
Manning's roughness coeff., n		0.0000	
2/3 1/2			
1.49 * r * s			
V =	ft/s	0.0000	
n			
Flow length, L	ft	ō	
T = L / (3600*V)	hrs	0.00	= 0.00

Page 1

TR-55 TABULAR HYDROGRAPH METHOD Type II Distribution (24 hr. Duration Storm)

Executed: 10-12-2000 20:11:42 Watershed file: --> p:\data\projects\3081\40\sw\op\CELL1 .WSD Hydrograph file: --> p:\data\projects\3081\40\sw\op\CELL1 .HYD

> Dairyland Power Coop. Plan of Operation Operational Conditions Cell 1

>>>> Input Parameters Used to Compute Hydrograph <<<<

Subarea Description	AREA (acres)	CN	Tc (hrs)	* Tt (hrs)	Precip. (in)	1	Runoff (in)	Ia input	/p /used
Area A	1.10	69.0	0.10	0.00	6.10	Ĩ	2.79	.15	.10
Area B	2.70	69.0	0.20	0.00	6.10	Ť	2.79	.15	.10

* Travel time from subarea outfall to composite watershed outfall point. Total area = 3.80 acres or 0.00594 sq.mi

Peak discharge = 14 cfs

>>>> Computer Modifications of Input Parameters <<<<<

	Input	Values	Rounded	Values	Ia/p	
Subarea	Tc	* Tt	Tc	* Tt	Interpolated	Ia/p
Description	(hr)	(hr)	(hr)	(hr)	(Yes/No)	Messages
Area A	0.10	0.00	**	**	No	
Area B	0.21	0.00	0.20	0.00	No	

* Travel time from subarea outfall to composite watershed outfall point.

** Tc & Tt are available in the hydrograph tables.

TR-55 TABULAR HYDROGRAPH METHOD Type II Distribution (24 hr. Duration Storm)

Executed: 10-12-2000 20:11:42 Watershed file: --> p:\data\projects\3081\40\sw\op\CELL1 .WSD Hydrograph file: --> p:\data\projects\3081\40\sw\op\CELL1 .HYD

> Dairyland Power Coop. Plan of Operation Operational Conditions Cell 1

>>>> Summary of Subarea Times to Peak <<<<

	Peak Discharge at	Time to Peak at
	Composite Outfall	Composite Outfall
Subarea	(cfs)	(hrs)
	*************	*********
Area A	5	12.1
Area B	9	12.1

Composite Watershed	14	12.1

Page 1

TR-55 TABULAR HYDROGRAPH METHOD Type II Distribution (24 hr. Duration Storm)

Executed: 10-12-2000 20:11:49 Watershed file: --> p:\data\projects\3081\40\sw\op\CELL2A .WSD Hydrograph file: --> p:\data\projects\3081\40\sw\op\CELL2A .HYD

Dairyland Power Coop. Plan of Opertaion Operational Conditions Cell 2A

>>>> Input Parameters Used to Compute Hydrograph <<<<

Subarea Description	AREA (acres)	CN	Tc (hrs)	* Tt (hrs)	Precip. (in)	1	Runoff (in)		/p /usec
Area D	1.30	69.0	0.10	0.00	6.10	T	2.79	.15	.10
Area E	1.60	69.0	0.20	0.00	6.10	Ť.	2.79	.15	.10

* Travel time from subarea outfall to composite watershed outfall point.

Total area = 2.90 acres or 0.00453 sq.mi Peak discharge = 11 cfs

>>>> Computer Modifications of Input Parameters <<<<<

	Input	Values	Rounded	Values	la/p	
Subarea	Tc	* Tt	Tc	* Tt	Interpolated	la/p
Description	(hr)	(hr)	(hr)	(hr)	(Yes/No)	Messages
Area D	0.10	0.00	**	**	No	
Area E	0.15	0.00	0.20	0.00	No	

* Travel time from subarea outfall to composite watershed outfall point.

** Tc & Tt are available in the hydrograph tables.

TR-55 TABULAR HYDROGRAPH METHOD Type II Distribution (24 hr. Duration Storm)

Executed: 10-12-2000 20:11:49 Watershed file: --> p:\data\projects\3081\40\sw\op\CELL2A .WSD Hydrograph file: --> p:\data\projects\3081\40\sw\op\CELL2A .HYD

> Dairyland Power Coop. Plan of Opertaion Operational Conditions Cell 2A

>>>> Summary of Subarea Times to Peak <<<<

	Peak Discharge at	Time to Peak at	
	Composite Outfall	Composite Outfall	
Subarea	(cfs)	(hrs)	

Area D	6	12.1	
Area E	6	12.2	

Composite Watershed	11	12.1	

TR-55 TABULAR HYDROGRAPH METHOD Type I1 Distribution (24 hr. Duration Storm)

Executed: 10-12-2000 20:11:57 Watershed file: --> p:\data\projects\3081\40\sw\op\TEMPBAS .WSD Hydrograph file: --> p:\data\projects\3081\40\sw\op\TEMPBAS .HYD

> Dairyland Power Coop. Plan of Opertaion Operational Conditions Cell 2A Temporary Basin

>>>> Input Parameters Used to Compute Hydrograph <<<<

Subarea Description	AREA (acres)	CN			Precip. (in)				

Area F	7.60	69.0	0.20	0.00	6.10	1	2.79	.15	.10

Total area = 7.60 acres or 0.01187 sq.mi Peak discharge = 27 cfs

	Input	Values	Rounded	Values	Ia/p	
Subarea	Tc	* Tt	Tc	* Tt	Interpolated	Ia/p
Description	(hr)	(hr)	(hr)	(hr)	(Yes/No)	Messages
rea F	0.24	0.00	0.20	0.00	No	

1.1

TR-55 TABULAR HYDROGRAPH METHOD Type II Distribution (24 hr. Duration Storm)

Executed: 10-12-2000 20:11:57 Watershed file: --> p:\data\projects\3081\40\sw\op\TEMPBAS .WSD Hydrograph file: --> p:\data\projects\3081\40\sw\op\TEMPBAS .HYD

> Dairyland Power Coop. Plan of Opertaion Operational Conditions Cell 2A Temporary Basin

>>>> Summary of Subarea Times to Peak <<<<

	Peak Discharge at	Time to Peak at
	Composite Outfall	Composite Outfall
Subarea	(cfs)	(hrs)
Area F	27	12.2
Composite Watershed	27	12.2

TR-55 TABULAR HYDROGRAPH METHOD Type II Distribution (24 hr. Duration Storm)

Executed: 10-12-2000 20:12:03 Watershed file: --> p:\data\projects\3081\40\sw\op\CELL2B .WSD Hydrograph file: --> p:\data\projects\3081\40\sw\op\CELL2B .HYD

> Dairyland Power Coop. Plan of Opertaion Operational Conditions Cell 2B

>>>> Input Parameters Used to Compute Hydrograph <<<<

Subarea Description	AREA (acres)	CN	Tc (hrs)	* Tt (hrs)	Precip. (in)		Ia/p input/used
Area G	0.60	69.0	0.10	0.00	6.10	2.79	.15 .10

* Travel time from subarea outrall to composite watersned outrall point. Total area = 0.60 acres or 0.00094 sq.mi Peak discharge = 3 cfs

>>>> Computer Modifications of Input Parameters <<<<< Input Values Rounded Values Ia/p Tc * Tt Tc * Tt Interpolated Subarea Ia/p Description (hr) (hr) (hr) (hr) (Yes/No) Messages Area G 0.10 0.00 ** ** No * Travel time from subarea outfall to composite watershed outfall point.

** Tc & Tt are available in the hydrograph tables.

TR-55 TABULAR HYDROGRAPH METHOD Type II Distribution (24 hr. Duration Storm)

Executed: 10-12-2000 20:12:03 Watershed file: --> p:\data\projects\3081\40\sw\op\CELL2B .WSD Hydrograph file: --> p:\data\projects\3081\40\sw\op\CELL2B .HYD

> Dairyland Power Coop. Plan of Opertaion Operational Conditions Cell 2B

>>>> Summary of Subarea Times to Peak <<<<

	Peak Discharge at	Time to Peak at
	Composite Outfall	Composite Outfall
Subarea	(cfs)	(hrs)
Area G	3	12.1
Composite Watershed	3	12.1

Page 1

TR-55 TABULAR HYDROGRAPH METHOD Type II Distribution (24 hr. Duration Storm)

Executed: 10-12-2000 20:12:08 Watershed file: --> p:\data\projects\3081\40\sw\op\CELL3 .WSD Hydrograph file: --> p:\data\projects\3081\40\sw\op\CELL3 .HYD

Dairyland Power Coop. Plan of Operation Operational Conditions Cell 3

>>>> Input Parameters Used to Compute Hydrograph <<<<

Subarea Description	AREA (acres)	CN	Tc (hrs)	* Tt (hrs)	Precip. (in)		Runoff (in)	Ia/p input/used
Area H	1.70	69.0	0.10	0.00	6.10	1	2.79	.15 .10

Total area = 1.70 acres or 0.00266 sq.mi Peak discharge = 7 cfs

>>>> Computer Modifications of Input Parameters <<<<< Input Values Rounded Values Ia/p Subarea Tc * Tt Tc * Tt Interpolated la/p (hr) (hr) Description (hr) (hr) (Yes/No) Messages Area H 0.10 0.00 ** ** No **

* Travel time from subarea outfall to composite watershed outfall point.

** Tc & Tt are available in the hydrograph tables.

~

Page 2

TR-55 TABULAR HYDROGRAPH METHOD Type II Distribution (24 hr. Duration Storm)

Executed: 10-12-2000 20:12:08 Watershed file: --> p:\data\projects\3081\40\sw\op\CELL3 .WSD Hydrograph file: --> p:\data\projects\3081\40\sw\op\CELL3 .HYD

> Dairyland Power Coop. Plan of Operation Operational Conditions Cell 3

>>>> Summary of Subarea Times to Peak <<<<

	Peak Discharge at	Time to Peak at
	Composite Outfall	Composite Outfall
Subarea	(cfs)	(hrs)
***********	********	
Area H	7	12.1
**********	***********	
Composite Watershed	7	12.1

Page 1

TR-55 TABULAR HYDROGRAPH METHOD Type II Distribution (24 hr. Duration Storm)

Executed: 10-12-2000 20:21:09 Watershed file: --> p:\data\projects\3081\40\sw\op\CELL4A .WSD Hydrograph file: --> p:\data\projects\3081\40\sw\op\CELL4A .HYD

> Dairyland Power Coop. Plan of Operation Operational Conditions Cell 4A

>>>> Input Parameters Used to Compute Hydrograph <<<<

Subarea Description	AREA (acres)	CN	Tc (hrs)		Precip. (in)			
Area I	3.60	69.0	0.20	0.00	6.10	L	2.79	.15 .

Total area = 3.60 acres or 0.00562 sq.mi Peak discharge = 13 cfs

	Input	Values	Rounded	Values	Ia/p	
Subarea	Tc	* Tt	Tc	* Tt	Interpolated	Ia/p
Description	(hr)	(hr)	(hr)	(hr)	(Yes/No)	Messages
Area I	0.15	0.00	0.20	0.00	No	

Page 2

TR-55 TABULAR HYDROGRAPH METHOD Type II Distribution (24 hr. Duration Storm)

Executed: 10-12-2000 20:21:09 Watershed file: --> p:\data\projects\3081\40\sw\op\CELL4A .WSD Hydrograph file: --> p:\data\projects\3081\40\sw\op\CELL4A .HYD

> Dairyland Power Coop. Plan of Operation Operational Conditions Cell 4A

>>>> Summary of Subarea Times to Peak <<<<

	Peak Discharge at	Time to Peak at
	Composite Outfall	Composite Outfall
Subarea	(cfs)	(hrs)

Area I	13	12.2
Composite Watershed	13	12.2

Reference Information

Dairyland Power Cooperative Run-On and Run-Off Control System Plan Alma Offsite Disposal Facility, Phase IV Landfill, Alma, Wisconsin

Cover description		Curve numbers for hydrologic soil group-				
Cover type and hydrologic condition	Average percent impervious area ²	÷	A	B	с	D
Fully developed urban areas (vegetation established)						
Open space (lawns, parks, golf courses, cemeteries, etc.) ² :						
Poor condition (grass cover < 50%)				-		it.
Fair condition (grass cover 50% to 75%)			68 49	79	86	39
Good condition (grass cover > 75%)		100	39	(69)	79	24
Impervious areas:			39	51	74	30
Paved parking lots, roofs, driveways, etc.				· · · ·	-	
(excluding right-of-way)			00			
Streets and roads:			98	98	98	98
Paved: curbs and storm sewers (excluding right-of-way)						
Paved: open ditches (including right-of-way)			98	98	98	98
Gravel (including right-of-way)			83	-69	92	93
Dirt (including right-of-way)			76	85	89	91
Western desert urban areas:			72	82	87	89
Natural desert landscaping (pervious areas only)			~			
Artificial desert landscaping (impervious weed barrier, desert shrub with 1- to 2-inch sand			63	Π	85	88
or gravel mulch and basin borders)		- 6	96	0.0	1.2	200
Urban districts:			m	96	96	96
Commercial and business	85	- 6	89	011		
Industrial	72		81	92 88	94	95
desidential districts by average lot size:		1	51	00	91	93
1/S acre or less (town houses)	65	1.1	n	85	90	
1/4 acre	38		51	75	83	92
1/3 acre	30		57	72	81	87
1/2 acre	25		54	70	80	146
1 acre	20		51	68	79	85
2 acres	12		16	65	10	84
		19				82
Developing urban areas						
lewly graded areas (pervious areas only,						
no vegetation) ³			7	6		1.24
dle lands (CN's are determined using cover types similar to those in table 2-2c).				(86)	91	94

Table 2-2a .- Runoff curve numbers for urban areas!

Average runoff condition, and I₂ = 0.25.

"The average percent impervious area shown was used to develop the composite CN's. Other assumptions are as follows: impervious areas are directly connected to the drainage system, impervious areas have a UN of 98, and pervious areas are considered equivalent to open space in good hydrologic condition. CN's for other combinations of conditions may be computed using figure 23 or 24. 3CN's shown are equivalent to those of pasture. Composite CN's may be computed for other combinations of open space cover type.

Composite CN's for natural desert landscaping should be computed using figures 2-3 or 2-4 based on the impervious area percentage (CN = 98) and the pervisus area CN. The pervisus area CN's are assumed equivalent to desert shrub in poor hydrologic condition. Composite CN's to use for the design of temporary measures during grading and construction should be compated using figure 2-3 or 24.

based on the degree of development (impervious area percentage) and the CN's for the newly graded pervisus areas.

Cover description				Curve num hydrologic so	Curve numbers for ydrologic soil group-		
Cover type	Treatment ²	Hydrologic condition ³	A	B	с	D	
Fallow	Bare soil		π	(86)	91	94	
	Crop residue cover (CR)	Poor Good	76 74	85 83	90 88	93 90	
Row crops	Straight row (SR)	Poor Good	72 67	81 (78) 80	88 85	91 89	
	SR + CR	Poor Good	71 64	80 75	87 82	90 85	
-	Contoured (C)	Poor Good	70 65	75 = TT	84 82	88 86	
	C + CR	Poor Good	69 64	78 74	83 81	87	
	Contoured & terraced (C&T)	Poor Good	66 62	74 71	80	85 82	
	C&T + CR	Poor Good	65 61	73 70	78 79 77	81 81 80	
mall grain	SR	Poor Good	65 63	76	84	88	
	SR + CR	Poor Good	64 60	75 75 72	83 83	87 86	
	С	Poor Good	63 61	74 73	80 82	84 85	
	C + CR	Poor Good	62 60	73 72	81 81	84 84	
	C&T	Poor Good	61 59	72 70	80 79	83	
	C&T + CR	Poor Good	60 58	71 69	78 · 78 77	81 81 80	
ose-seeded or broadcast	SR	Poor Good	66	77	85	89	
egumes or rotation	c	Poor Good	58 64 55	72 75	81 83	85 85	
meadow [.]	C&T	Poor Good	63 51	69 73 67	78 80 76	83 83 80	

Table 2-2b .- Runoff curve numbers for cultivated agricultural lands'

¹Average runoff condition, and $l_{\mu} = 0.2S$.

²Crop residue cover applies only if residue is on at least 5% of the surface throughout the year. ²Hydrologic condition is based on combination of factors that affect infiltration and runoff, including (a) density and canopy of vegetative areas, (b) amount of year-round cover, (c) amount of grass or close-seeded legumes in rotations, (d) percent of residue cover on the land surface (good ≥ 20%), and (e) degree of surface roughness. Poso: Factors impair infiltration and tend to increase runoff.

Gund: Factors encourage average and better than average infiltration and tend to decrease runoff.

Cover description	Curve numbers for hydrologic soil group-				
Cover type	Hydrologic condition	A	В	с	D
Pasture grassland) or range-continuous forage for grazing. ²	Poor Fair Good	68 49 39	କ୍ତି ଛ ଅ	86 79 74	89 84 80
Meadow-continuous grass, protected from grazing and generally mowed for hay.	-	30	58	71	78
Brush—brush-weed-grass mixture with brush the major element. ³	Poor Fair Good	48 35 430	65 56 48	77 70 65	83 77 73
Woods—grass combination (orchard or tree farm). ^{\$}	Poor Fair Good	57 43 32	73 65 58	82 76 72	86 82 79
Woods.*	Poor Fair Good	45 36 430	66 G	77 73 70	83 79- 77
Farmsteads—buildings, lanes, driveways, and surrounding lots.		59	74	82	86

Table 2-2c .- Runoff curve numbers for other agricultural lands'

¹Average runoff condition, and I₂ = 0.2S.

2 Poor:

Fair:

<50% ground cover or heavily grazed with no mulch. 50 to 75% ground cover and not heavily grazed. >75% ground cover and lightly or only occasionally grazed. Good:

Pour: <50% ground cover. 50 to 75% ground cover. Fair:

Goud: >75% ground cover.

"Actual curve number is less than 30; use CN = 30 for runoff computations.

*CN's shown were computed for areas with 50% woods and 50% grass (pasture) cover. Other combinations of conditions may be computed from the CN's for woods and pasture.

*Poor: Forest litter, small trees, and brush are destroyed by heavy grazing or regular burning.

Woods are grazed but not burned, and some forest litter covers the soil. Fair:

Good: Woods are protected from grazing, and litter and brush adequately cover the soil.

Sheet flow

Sheet flow is flow over plane surfaces. It usually occurs in the headwater of streams. With sheet flow, the friction value (Manning's n) is an effective roughness coefficient that includes the effect of raindrop impact; drag over the plane surface; obstacles such as litter, crop ridges, and rocks; and erosion and transportation of sediment. These n values are for very shallow flow depths of about 0.1 foot or so. Table 3-1 gives Manning's n values for sheet flow for various surface conditions.

For sheet flow of less than 300 feet, use Manning's kinematic solution (Overton and Meadows 1976) to compute Tt:

$$T_t = \frac{0.007 \text{ (nL)}^{0.8}}{(P_2)^{0.5} \text{ s}^{0.4}}$$
 [Eq. 3-3]

Table 3-1 .- Roughness coefficients (Manning's n) for sheet flow

Surface description	ni
Smooth surfaces (concrete, asphalt, gravel, or	
bare soil)	0.011
Fallow (no residue)	0.05 -
Cultivated soils:	
Residue cover ≤ 20%	0.06
Residue cover >20%	0.17 -
Grass:	
Short grass prairie	0.15 -
Dense grasses ²	0.24
Bermudagrass	0.41
Range (natural)	0.13
Woods:3	
Light underbrush	0.40
Dense underbrush	0.80

"The n values are a composite of information compiled by Engman (1986).

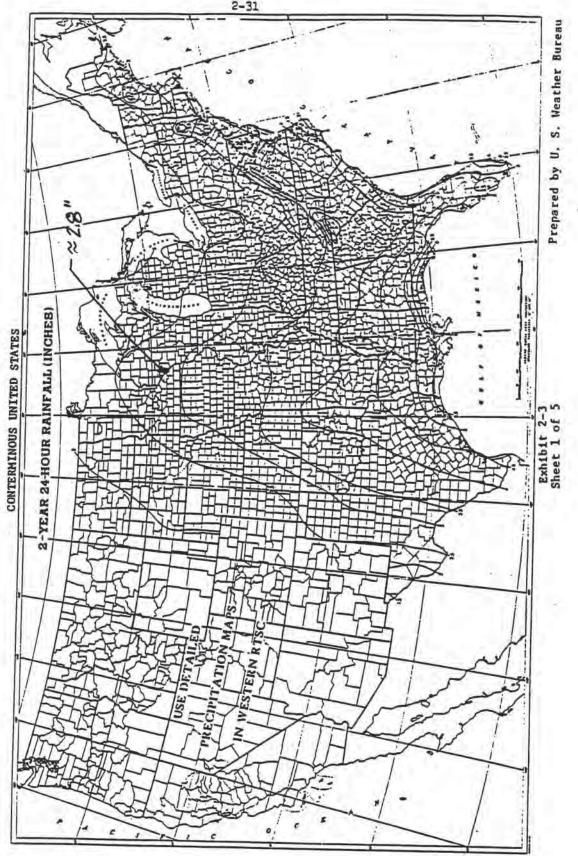
Includes species such as weeping lovegrass, bluegrass, buffalo

grass, blue grama grass, and native grass mixtures. When selecting n, consider cover to a height of about 0.1 ft. This is the only part of the plant cover that will obstruct sheet flow.

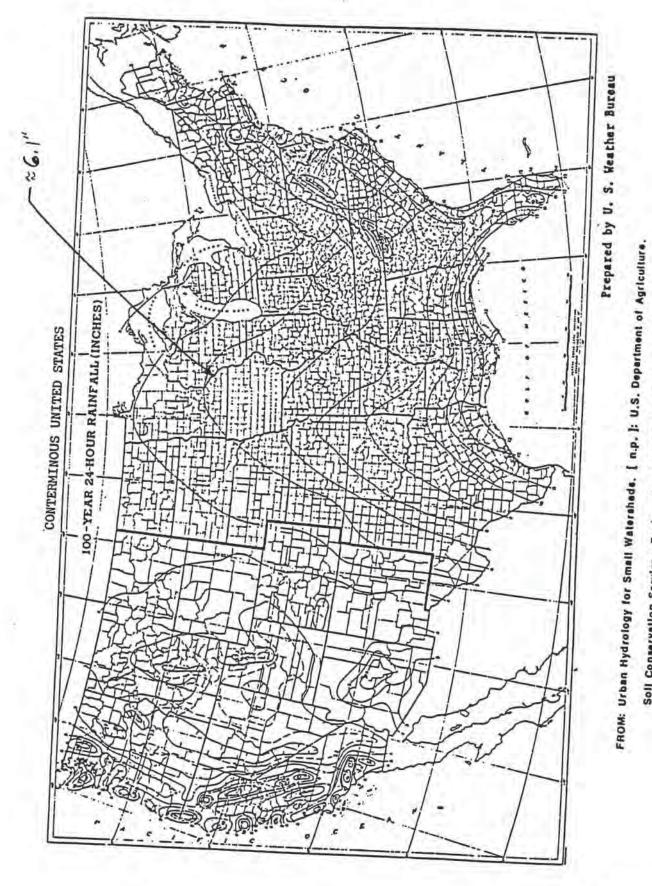
where

- T₁ = travel time (hr).
- n = Manning's roughness coefficient (table 3-1).
- L = flow length (ft),
- P2 = 2-year, 24-hour rainfall (in), and
- s = slope of hydraulic grade line (land slope, A/A).

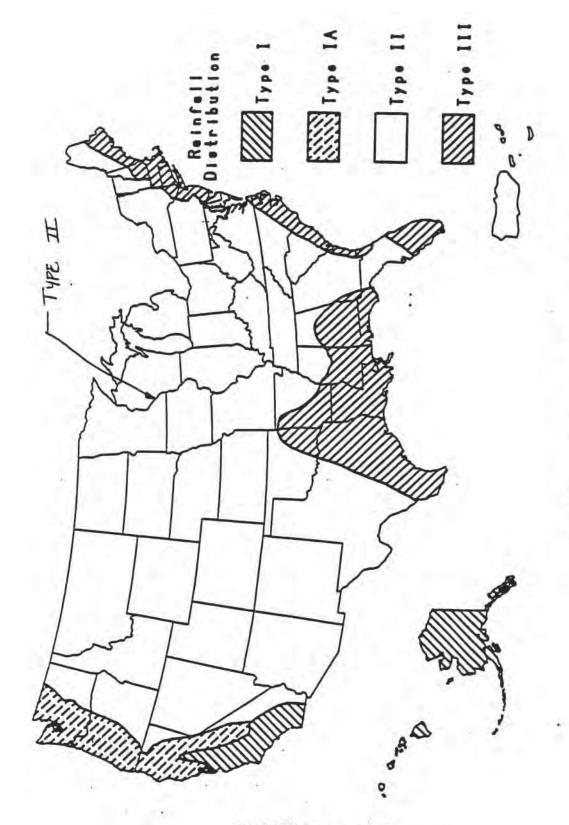
This simplified form of the Manning's kinematic solution is based on the following: (1) shallow steady uniform flow, (2) constant intensity of rainfall excess (that part of a rain available for runoff), (3) rainfall duration of 24 hours, and (4) minor effect of infiltration on travel time. Rainfall depth can be obtained from appendix B.


Shallow concentrated flow

After a maximum of 300 feet, sheet flow usually becomes shallow concentrated flow. The average velocity for this flow can be determined from figure 3-1, in which average velocity is a function of watercourse slope and type of channel. For slopes less than 0.005 ft/ft, use equations given in appendix F for figure 3-1. Tillage can affect the direction of shallow concentrated flow. Flow may not always be directly down the watershed slope if tillage runs across the slope.


After determining average velocity in figure 3-1, use equation 3-1 to estimate travel time for the shallow concentrated flow segment.

Open channels


Open channels are assumed to begin where surveyed cross section information has been obtained, where channels are visible on aerial photographs, or where blue lines (indicating streams) appear on United States Geological Survey (USGS) quadrangle sheets. Manning's equation or water surface profile information can be used to estimate average flow velocity. Average flow velocity is usually determined for bank-full elevation.

2-31

Soll Conservation Service Engineering Division, (Technical Release No. 55), 1975, as revised 1981.

(210-VI-TR-55, Second Ed., June 1986)

Diversion Berm, Perimeter Ditch, and Spillway Design Calculations

Dairyland Power Cooperative Run-On and Run-Off Control System Plan Alma Offsite Disposal Facility, Phase IV Landfill, Alma, Wisconsin Final October 2016 Revised October 2021

\\madison-vfp\Records\-\WPMSN\PJT2\421717\0000\R4217170000-002.docx

Purpose/Methodology/Assumptions/Results/References

Dairyland Power Cooperative Run-On and Run-Off Control System Plan Alma Offsite Disposal Facility, Phase IV Landfill, Alma, Wisconsin

COMPUTATION SHEET

744 Heartland Trail (53717-8923) P.	. O. Box 8923 (5370	8-8923)	Madison, WI	(608) 831-4444	FAX: (608) 831-3334	VOICE: (608) 831-1989
PROJECT/PROPOSAL NAME	PREPAR	ED	CH	ECKED	PROJECT/PF	OPOSAL NO.
Dairyland Power Cooperativ	e BJK	Date 9/0		Date:		3081.40

DIVERSION BERM, PERIMETER DITCH, AND SPILLWAY DESIGN CALCULATIONS

Purpose

To size the diversion berms, perimeter ditches and spillway at the proposed Dairyland Power Cooperative Landfill to adequately handle the surface water runoff from a 100-year, 24-hour storm.

Methodologies

Ditches, diversion berms and spillways were designed to channel the surface water runoff from the landfill drainage areas to the sedimentation basins, receiving ditches, or spillways. The direction of surface water runoff from the drainage areas surrounding the proposed landfill is towards the proposed landfill. Perimeter drainage ditches were therefore incorporated into the design to route the surface water runoff from outside the proposed landfill limits along the perimeter of the landfill area to the existing main channel at the south end of the landfill. These ditches are labeled as the NW, NE, West, SE, and SW ditches. The perimeter ditches sized in this subsection of the appendix, then, include ditches to collect runoff from the landfill drainage areas as well as ditches to collect surface water run-on from the drainage areas surrounding the landfill.

The adequacy of the diversion berms and ditches in handling the surface water runoff and runon and in limiting the amount of erosion is based on the depth of flow and velocity, respectively, in the ditch. An in-house RMT spreadsheet incorporating Manning's equation was used to assist in the design of the diversion berms and ditches. This program allows the user to input the ditch geometry, the peak flow (as determined by the surface water runoff calculation), and the vegetative retardance factor (Chow, 1959). The program then begins an iterative process which adjusts the flow depth and Manning's coefficient until the trial velocity and the resultant velocity are within 0.002 feet per second (fps) of each other. The end result is the peak flow depth and peak velocity for the geometry and peak flow entered. Design software provided by Synthetic Industries was also used to select erosion control matting for ditches and grouted riprap for spillways.

Permanent ditches, diversion berms, and spillways will be constructed as early in the site development as practicable. Where temporary ditching is required, these temporary ditches have been designed to the same standards as the permanent ditches. Calculations for the sizing of the temporary ditches are also attached.

RMT.

COMPUTATION SHEET

744 Heartland Trail (53717-8923) P.	. O. Box 8923 (5370	08-8923)	Madison, WI	(608) 831-4444	FAX: (608) 831-3334	VOICE: (608) 831-1989
PROJECT/PROPOSAL NAME	PREPAR	RED	CH	ECKED	PROJECT/PR	OPOSAL NO.
Dairyland Power Cooperativ	re BJK	Date 9/0		Date:		3081.40

It is noted that the storm water control structures have been designed using a 100-year, 24-hour storm event and a TR-55 Type II storm distribution. As noted in the surface water runoff calculations, the peak flows calculated using this method meet or exceed the peak flows calculated using a 25-year, time of concentration storm event (required by NR 504.09).

Assumptions

The following assumptions were used to design the diversion berms and perimeter ditches:

- Diversion berms, perimeter ditches and the spillway were designed to handle the runoff from the 100-year, 24-hour storm event.
- Diversion berm ditches were designed as V-notch ditches with a minimum 0.5 foot of freeboard for the 25-year, 24-hour storm. Diversion berm ditches were designed to convey the 100-year, 24-hour storm without overtopping.
- Perimeter ditches were designed as both V-notch and flat bottom (10-foot and 20-foot-wide) ditches with a minimum 0.5 foot of freeboard for the 25-year, 24-hour storm.
 Perimeter ditches were designed to convey the 100-year, 24-hour storm without overtopping.
- Grass-lined diversion berm and perimeter ditches were designed for a maximum velocity of 4 fps. Ditches with velocities exceeding 4 fps were designed to be lined with erosion mat or riprap, as appropriate.
- The spillway was designed as 20-foot-wide, flat-bottom spillway with a minimum 0.5 foot of freeboard.
- The peak flows in the diversion berms, perimeter ditches and the spillway were obtained from the hydrographs generated in the "Surface Water Runoff Calculations" subsection of this appendix.
- Manning's numbers were selected for both "low" retardance (Type "D") and "moderate" retardance (Type "C") as given by the U.S. Soil and Conservation Service. Type "D" is typical of spring conditions while Type "C" is typical of summer conditions. For ditches lined with erosion matting, default Manning numbers from the Synthetic Industries design software were utilized.

Results

The diversion berms and perimeter ditches were adequately sized to handle the surface water runoff from a 100-year, 24-hour storm event. The diversion berms at a 2 percent slope will be grass-lined. To limit erosion, permanent erosion matting will be placed in the diversion berms at a 6 percent slope, as well as in most of the perimeter ditching. Grouted riprap will be constructed in the spillways. The attached figure highlights the ditch sizing results.

Dairyland Power Cooperative

COMPUTATION SHEET

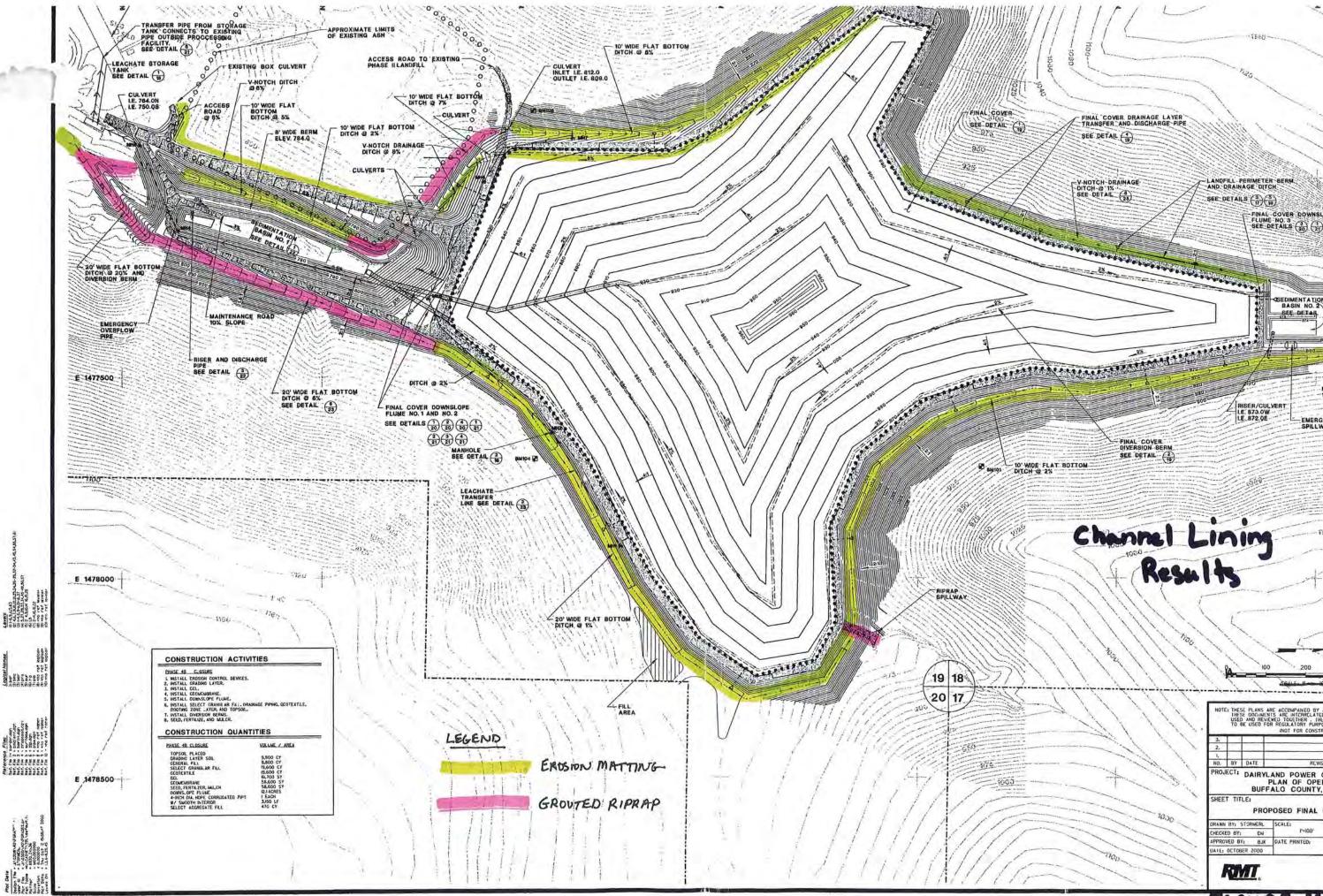
3081.40

			SHEE	T3	OF3
744 Heartland Trail (53717-8923)	P. O. Box 8923 (53708-892	3) Madison, WI	(608) 831-4444	FAX: (608) 831-3334	VOICE: (608) 831-1989
PROJECT/PROPOSAL NAME	PREPARED	CH	HECKED	PROJECT/PR	ROPOSAL NO.
	By:	Date: By	: Date:	and the second second	

References

Chow, V.T. 1959. Open Channel Hydraulics, McGraw Hill, New York.

9/00


BJK

- Wisconsin Department of Transportation. 1994. Facilities Development Manual. February 1994.
- U.S. Department of Agriculture, Soil Conservation Service. 1986. Engineering Field Manual for Conservation Practices. November 1986.

Goldman, S.J., et al. Erosion and Sediment Control Handbook. New York: McGraw-Hill. 1986.

Synthetic Industries. EC-Design 2000. Stormwater Management and Erosion Control Design Software. V.1.2.

Wisconsin DNR, Bureau of Water Resources Management. 1989. Wisconsin Construction Site Best Management Practice Handbook, Publication WR-222-89.

COMPUTER ALDED DESIGN & ORAFTING

FINAL COVER DRAINAGE LAYER TRANSFER AND DISCHARGE PIPE SEE DETALL V-NOTCH-DRAINAGE DITCH-@ 1% SEE DETAIL (1) LANDFILL PERIMETER BERM SEE DETAILS FINAL COVER DOWNSLOPE IFLUME NO. 3 SEE DETAILS $\begin{pmatrix} 3 \\ 20 \end{pmatrix} \begin{pmatrix} 1 \\ 3 \end{pmatrix} \begin{pmatrix} 2 \\ 2 \end{pmatrix} \begin{pmatrix} 4 \\ 2 \end{pmatrix}$ BASIN NO. 2 MAINTENANCE ROAD SPILLWAY -2 NOTE: THESE PLANS ARE ACCOMPANIED BY A REPORT OF THE SAME IHESE ORGANENTS ARE INTERPELATED AND ARE INTERDED TO USED AND REVIEWED TOGETHER. I HESE OCCUMENTS ARE INTER TO BE USED FOR REGULATORY PURPOSES ONLY. NOT FOR CONSTRUCTIO 3. 2. I. NO. BY DATE REVISION PROJECT: DAIRYLAND POWER COOPERATIVE PLAN OF OPERATION BUFFALO COUNTY, WISCONSIN SHEET TITLES PROPOSED FINAL GRADES RAWN BY: STORMERL SCALE: PROJ. NO. 3081.40 P=100* HECKED BY: CN FILE NO. FGRADES.PLT PROVED BY: BJK DATE PRINTED SHEET 12 OF 23 IE: OCTOBER 2000 744 Reartland Troll Novison WI 53717-1934 RMT P.D. Box 8923 Wedlson, WI 1:3708-892 Place: 608-831-4444 FIGURE K-10

Calculations – Post-closure Landfill Conditions

		Grass Channel Sizing Calculation	5		
Site: Proje Char		Dairyland Power Cooperative 3081.33 Diversion Berm (2%) - worst case fl Area 1F	Date: User: ow	10/1/98 BLP VIOL 10198	
L	Input Para	ameters.			
	A. Side slo	ope, Z1 (hor/vert) =		4.000	ft/ft -
	B. Side slo	ope, Z2 (hor/vert) =		2.000	ft/ft ~
	C. Bottom	width, B =		0.000	ft 🖉
	D. Design	channel slope, S =		0.020	ft/ft <
	E. Channe	l Peak Flow, Q =		25.000	cfs 🗸
	F. Enter	- 1 - for Type "C" Veg. Retardence - 2 - for Type "D" Veg. Retardence		1	Conditions
а.	Peak Flow	Calculations.			
	A. Trial flo	ow depth, D = (Bisection method until Va=Vb)		1.570	ft 0.4' freeboard
	B. Channel	l flow area, Ac = (.5*Z1*D^2) + (B*D) + (.5*Z2*D^2)		7.390	sq ft
	C. Wetted	Perimeter, Pw = (D*(Z1^2+1)^.5) + B + (D*(Z2^2+1)'	`.5)	9.981	ft
	D. Hydrau	lic radius, Rh = (Ac/Pw)		0.740	ft
	E. Velocity	and hydraulic radius, VR = (Va * Rh)		2.505	sfps
	F. Channel	flow Manning's coeff, nc = 0		0.051	
	G. Trial vel	locity, Va = (Q/Ac)		3.383	
		nt velocity, Vb = 1.49/nc) * (Rh^.667) * (S^.5)		3.383	fps < 4 Fps

RMT, Inc. Grass Channel Sizing Calculations

Invoke Solution Macro by typing - 'ctrl' D

h:\data\common\template\sc-51\grasscha.xls

RMT, Inc. Grass Channel Sizing Calculations

Site:	Dairyland Power Cooperative	Date:	10/1/98
Project #:	3081.33	User:	BLP
Channel:	Diversion Berm (2%) - worst case f Area 1F	low	10/98 10/98

I. Input Parameters.

П.

A. Side slope, Z1 (hor/vert) =	4.000 ft/ft <
B. Side slope, Z2 (hor/vert) =	2.000 ft/ft
C. Bottom width, B =	0.000 ft
D. Design channel slope, S =	0.020 ft/ft <
E. Channel Peak Flow, Q =	25.000 cfs -
F. Enter - 1 - for Type "C" Veg. Retardence - 2 - for Type "D" Veg. Retardence	2 - Spring Conditions
Peak Flow Calculations.	
A. Trial flow depth, D = (Bisection method until Va=Vb)	1.456 ft 0.5' freeboard
B. Channel flow area, Ac = $(.5*Z1*D^2) + (B*D) + (.5*Z2*D^2)$	6.357 sq ft
C. Wetted Perimeter, $Pw = (D^*(Z1^2+1)^{.5}) + B + (D^*(Z2^2+1)^{.5})$	9.257 ft
D. Hydraulic radius, Rh = (Ac/Pw)	0.687 ft
E. Velocity and hydraulic radius, VR = (Va * Rh)	2.701 sfps
F. Channel flow Manning's coeff, nc = 0	0.042
G. Trial velocity, Va = (Q/Ac)	3.933 fps
H. Resultant velocity, Vb = (1.49/nc) * (Rh^.667) * (S^.5)	3.933 fps 24 fps

Invoke Solution Macro by typing - 'ctrl' D

h:\data\common\template\sc-51\grasscha.xls

		RMT, Inc.			
		Grass Channel Sizing Calculat	ions		
		ones chance sharing carcum	1015		
Site:		Dairyland Power Corp.	Date:	31-July-98	
Proje	ct #:	3081.33	User:	SRC	
Chan	nel:	Ditch (8%)			
		Area 1G - Flow From Landfill P	ortion - 15 cfs	VIDIL	
		icadonico a presión de la centra d			-
I.	Input Pa	arameters.			
	A. Side s	slope, Z1 (hor/vert) =		3.000	ft/ft ,
	B. Side s	lope, Z2 (hor/vert) =		2.000	ft/ft
	C. Botto	m width, B =		0.000	ft
	D. Desig	n channel slope, S =		0.080	ft/ft -
	E. Chanr	nel Peak Flow, Q =		15.000	cfs
	F. Enter	- 1 - for Type "C" Veg. Retarden	ce	1	- summer conditions
		- 2 - for Type "D" Veg. Retarden	ce		conditions
I.	Peak Flo	w Calculations.			
	A. Irial	flow depth, D =		1.071	ft 0.9' freeboard
	R Chann	(Bisection method until Va=Vb) el flow area, Ac =			
	D. Charu	(.5*Z1*D^2) + (B*D) + (.5*Z2*D^	2)	2.870	sq ft
	C. Wette	d Perimeter, Pw =	2)	5.784	4
	123 11 276	(D*(Z1^2+1)^.5) + B + (D*(Z2^2	+1)^ 5)	5.704	IC .
	D. Hydra	ulic radius, Rh =		0.496	4
		(Ac/Pw)		0.490	it is a second s
	E. Veloci	ty and hydraulic radius, VR =		2.593	sfps
		(Va * Rh)		2.070	sips
	F. Chann	el flow Manning's coeff, nc =		0.051	
		0		0.002	
	G. Trial v	velocity, Va =		5.226	fps
		(Q/Ac)			· ·
	H. Resul	tant velocity, Vb =		5.226	fps > 4425
		(1.49/nc) * (Rh^.667) * (S^.5)		C.L.L.U	fps > 4fps se permanent
		and the state of the state			se permanent
				u	2- F-11

H:\data\common\src\Grassch5.xls

erosion

	RMT, Inc.			
	Grass Channel Sizing Calculatio	ns		
Site: Project #: Channel:	Dairyland Power Corp. 3081.33 Ditch (8%)	Date: User:	31-July-98 SRC	
	Area 1G - Flow From Landfill Por	tion - 15 cfs	verticias	<u>.</u>
In	put Parameters.			
A.	. Side slope, Z1 (hor/vert) =		3.000	ft/ft
B.	Side slope, Z2 (hor/vert) =		2.000	ft/ft
C.	Bottom width, B =		0.000	ft 1
D.	Design channel slope, S =		0.080	ft/ft ~
E.	Channel Peak Flow, Q =		15.000	cfs ,
F.	Enter - 1 - for Type "C" Veg. Retardence - 2 - for Type "D" Veg. Retardence		2	conditions
. Pe	ak Flow Calculations.			
A.	Trial flow depth, D = (Bisection method until Va=Vb)		0.992	ft l' freeboard
B. (Channel flow area, Ac = (.5*Z1*D^2) + (B*D) + (.5*Z2*D^2)	ġ.	2.459	sq ft
C.	Wetted Perimeter, Pw = (D*(Z1^2+1)^.5) + B + (D*(Z2^2+1)	.)^.5)	5.353	ft
D.	Hydraulic radius, Rh = (Ac/Pw)		0.459	ft
E. 1	Velocity and hydraulic radius, VR = (Va * Rh)		2.802	sfps
F. 0	Channel flow Manning's coeff, nc = 0		0.041	
G. '	Trial velocity, Va = (Q/Ac)		6.101	fps
H.	Resultant velocity, Vb = (1.49/nc) * (Rh^.667) * (S^.5)		6.101	fps > 4 fps
			use erosi	fps > 4 fps permanent on matting

H:\data\common\src\Grassch6.xls

NORTH AMERICAN GREEN - ECMDS VER.IV - CHANNEL PROTECTION - ENGLISH USER SPECIFIED CHANNEL LINING ANALYSIS

PROJECT NAME: Dairyland Power COMPUTED BY: BJK FROM STATION/REACH: Area 1G - Fl DRAINAGE AREA: PROJECT NO.: 3081.33 DATE: 10-06-1998 TO STATION/REACH: DESIGN FREQUENCY: 100

 Channel Bottom Side Slope Lt.
 Side Slope Rt.
 Channel Slope

 Width (ft)
 (Horz. to 1)
 (Horz. to 1)
 (ft/ft)

 0.00
 3.0
 2.0
 0.080

.....

Discharge (cfs)	Peak Flow Period (hrs)	Velocity (ft/sec)	Area (ft^2)	Hydraulic Radius (ft)	Normal Depth (ft)	
						014
15.0	2.0	5.34	2.81	0.49	1.06	

.....

Lining Growth Veg. Manning Permissible Calculated Safety Remark Type Habit Den Coefficient Shear (lb/sf) Shear (lb/sf) Factor P300 0.049 8.00 5.29 1.51 STABLE Staple E

Phase 3 (Mature Vegetation)

	RMT, Inc.			
	Grass Channel Sizing Calculation	tions		
Site: Project #: Channel:	Dairyland Power Corp. 3081.33 Ditch (1%)	Date: User:	31-July-98 SRC	
	Area 2B		NONT 10KK	-
I. Input Par	rameters.			
A. Side sl	lope, Z1 (hor/vert) =		3.000	ft/ft
B. Side sl	ope, Z2 (hor/vert) =		2.000	ft/ft -
C. Botton	n width, B =		0.000	ft -
D. Desigr	n channel slope, S =		0.010	ft/ft
E. Chann	el Peak Flow, Q =		73.000	cfs -
F. Enter	- 1 - for Type "C" Veg. Retarder - 2 - for Type "D" Veg. Retarder		1	- Summer conditions
II. Peak Flow	w Calculations.			
A. Trial f	low depth, D = (Bisection method until Va=Vb)		2.593	ft 0,4' freeboard
B. Channe	el flow area, Ac = (.5*Z1*D^2) + (B*D) + (.5*Z2*D	^2)	16.814	sq ft
C. Wetted	l Perimeter, Pw = (D*(Z1^2+1)^.5) + B + (D*(Z2^2	2+1)^.5)	14.000	ft
D. Hydra	ulic radius, Rh = (Ac/Pw)		1.201	ft
E. Velocit	y and hydraulic radius, VR = (Va * Rh)		5.214	sfps
F. Channe	el flow Manning's coeff, nc = 0		0.039	
G. Trial v	elocity, Va = (Q/Ac)		4.342	
	ant velocity, Vb = (1.49/nc) * (Rh^.667) * (S^.5)		4.341	fps > 4 fps
			use eros	fps > 4 fps permanent ion matting

H:\data\common\src\Grassch7.xls

	RMT, Inc. Grass Channel Sizing Calculati	ons		
Site: Project #: Channel:	Dairyland Power Corp. 3081.33 Ditch (1%) Area 2B	Date: User:	31-July-98 SRC ↓Ю [⊮] ω]άδ	
I. Input Par				-
а. приста	rameters.			
A. Side sl	lope, Z1 (hor/vert) =		3.000	ft/ft _
B. Side sl	ope, Z2 (hor/vert) =		2.000	ft/ft -
C. Botton	n width, B =		0.000	ft <
D. Desigr	n channel slope, S =		0.010	ft/ft ~
E. Channe	el Peak Flow, Q =		73.000	cfs 1
F. Enter	- 1 - for Type "C" Veg. Retardence - 2 - for Type "D" Veg. Retardence		2	
II. Peak Flow	v Calculations.			
	low depth, D = (Bisection method until Va=Vb)		2.512	ft 0.5' freebard
	el flow area, Ac = (.5*Z1*D^2) + (B*D) + (.5*Z2*D^2)	15.774	sq ft
C. Wetted	Perimeter, Pw = (D*(Z1^2+1)^.5) + B + (D*(Z2^2+	1)^.5)	13.560	ft
D. Hydrau	ulic radius, Rh = (Ac/Pw)		1.163	ft
E. Velocity	y and hydraulic radius, VR = (Va * Rh)		5.383	sfps
F. Channe	l flow Manning's coeff, nc = 0		0.036	
G. Trial ve	elocity, Va = (Q/Ac)		4.628	fps
	ant velocity, Vb = (1.49/nc) * (Rh^.667) * (S^.5)			fps > 4 fps
			use erosi	permanent on matting

H:\data\common\src\GRASSCH8.xls

10/6/98

1

NORTH AMERICAN GREEN - ECMDS VER.IV - CHANNEL PROTECTION - ENGLISH USER SPECIFIED CHANNEL LINING ANALYSIS

PROJECT NAME: Dairyland Paower Coop.	PROJECT NO .: 3081.33
COMPUTED BY: BJK	DATE: 10-06-1998
FROM STATION/REACH: Area 28	TO STATION/REACH:
DRAINAGE AREA:	DESIGN FREQUENCY: 100

Channel Bottom	Side Slope Lt.	Side Slope Rt.	Channel Slope	
Width (ft)	(Horz. to 1)	(Horz. to 1)	 A second s second second s second second se	
0.00	3.0	2.0	0.010	

Discharge (cfs)	Peak Flow Period (hrs)	Velocity (ft/sec)	Area (ft^2)	Hydraulic Radius (ft)	Normal Depth (ft)	
73.0	2.0	3.64	20.08	1.31	2.83	oK

Lining Growth Veg. Manning Permissible Calculated Safety Remark Type Habit Den Coefficient Shear (lb/sf) Shear (lb/sf) Factor P300 0.049 8.00 1.77 4.52 STABLE Staple E

Phase 3 (Mature Vegetation)

	rtland	1	_						697	-		10	-	821		-		-	-		_		- 16	101.0	1	080	1	. OF	-	3	5	-
	T/PRC	1.7.4			8923	M		n, wi	53/1			10		-	EM		~ 1		1.1.1.1	1000			- 100		-	-	CT/	PRO	POSA	L NO	5.	-
	AIRY				ow	ER	4	TOP.					-	By.	6	R	3	19/	17	B	to		Ti	19	21:	30	61.	27	1			
	1					1			×					1	Rev	BLF	133	r.	1019	3												
	11	1	T	T	1			1	1	T	T	٦	5		-	+0	9	-	0					1					1	1		
D	VTZ	H	0	31	GN	0	A	ru	4	170	a	5	-	De	51	61		IN	Fa	RI	n	m	21	1	12	5 7	R .	24	the	ST	DRI	M
~	T	4	Ŧ	T	T			T			T					11.1							61						1	i	1	
11				1													10	1.5						273							10	
50	UTH		spi	de	NAI	•							e.		2											5					\leq	
1 R			T	T	T						•		15			1		1.54	1		1						1		1	1	1	1
	W	OT	*	= 20	1			PE	AK	F	lon	1-	4	N	R	BI	m	16	0	en	NI	60	A	RE	15			10				
	54	ORE	=	20	%			3	C +	.4	C	1	EA	FT	+	NO	AT	TE	tst	-+	NO	ET	4 4	B	15 1	N2	00	TR	PW	1-	1	
	Mm	12	AF	TH	= 4	1			1	1		_	1.4					1.1							21							
		-	+				-	18	+	N	+	1	14	5	+	6	5	+	19	4	+	10	-	7	46	cf	s	(2	5-	YE	AR)	
1		+	+	+			_	-1	1	- 1-	-	Ļ		_		1	L	_	-	2		-		4	A	av	nd	10	75	0	6-	Co
		-	+	+	-		-	2	5+	18	5 +	8	2	1±	11	0+	- 30	60	+ 2	21	3	Ji	374			_	+7	1.1.1	<u>i)</u>	1	-	
10.4			+	-				+	+	+	+	+		-	-	N	0+	-:	A	re	F	a	5 0	-	-	-	12S	+>=	5 4	ne	1	-
E	DI	TOP	+ (27	() ((9	74	4	+	+	+	+	-	-	-			-	-	- 4	nd	e	17	. 6	H	25	Cle	p-1	YR.	Fa	low	57
		-	+	+	-		+	-	+	-	+	+				-			-			-			- /	-	-	+-	-	-	-	-
	WiD	_	_		-		-	PEA			-	- 1			-	-							-		-			-	-	-		-
	SLO				5'	-	-	30	1	40		E	1.57	11	N	PR	HE	151	+ 1	NO	27	4 4	64	\$11	/ 2		TE	200	-	12		-

E DITCH KIRD			1.1						1.163			
	5A	me	FL	rus	15	100	E			1111		
WIDTH-ZO'		11	-				1.1	12	1.1			
SLOPE - 190		11						14 11				
MIN DEDTH -6'										181		

E	0	ITC	M	-	+				-	-	-	-						-					2				111		_	+	-
ì	W	07		10	1				P	A	1	10	w	-	co.	~7	RI	BL	77	16		R	m	re	κ.	AR	EA	5		+	-
ľ	Su	PE	==	2%			112	1											5						_	1.1					
-	MIN	1	EF	n+	•	lot.			4	1	c	*	N	RI	#	+	b	151	N	2	00	T		Ł							
1										1	+	19	ч	+	10		2	15	0	FS		(2	5-	VEI	K	5	1			-	5
	+	-	+		-					8	+	36	0+	1	1	-	-	399	CF	-	CI	00	- 71	A	F	mu	ou)		-	+
		1				110									+	-N	-	_	-		- 1	2.	. 1	ks	(5.	-)		nd	A .	r
1			1								12			1				1.1.1.1	-5	1.00		loc		1.1.1							
	Orto	h													1									10		10					
1	in	44	4=	10		1		Pe	uk	F	lo	6	-0	bn	tri	bu	h	19	0	an	has	le	Ar	La	1	1		1.11	1	T	
b .	51	0	1.	2	7.						C	4 1	Jor	the	es	- +	N	5	H	1	B	1.	5 7	10						1	+

510pe = 2% Min Depth = 10't 1

= 18 + 110 + 360 + 21 = 509 cfs (100 4r)

				-	923	Madia	ion, WI S	3708-	8923	(6	08) 8	-		_	X: 18	08)8	and the second second	of Local Division of Local Division in which the		NCE	(60	8) 83			¥ / 5	0000		-	_	_
OJECT	/ PROP	OSAL	NAME	00		0 ,	0.00	2					6J		Deter			HEC:	B	10	Tra	4	-			2Y				
DAI	RYL	AN	0	pa	DE	K C	2000		-	-	-	-	Car	_	-		14	00	0	10			-							
											_	_	_	_						_	_				-		_			_
1 1		1				-									_	-	1	-	-	4	+	+	1	+	-	_	1	1		
NW	PI	TE	*								3	-			-	+	4	+	-	4	+	+	+	-	+				_	_
TI		T				-		-		-	-	-	_	-	_	-	+	+	+	+	-	-	+	-		-	1	1	+	-
					-1	TH		-	P	EA	-	FO	au	1+	- 4	on	TR	10	vp	4	-	DR	AN	VA	4	A	RE	AS		-
and the owner whether the local division of	DPE		-		-	_		-		-		_	_	-	_	-	+	-	-		+	-	-	-	+	-	-		- ton	_
M	ND	EP	H	-4	H	-	+	-		-	2	B	-	4	в	CF	5	4	25	X	4	-1	4	+	+	+	-	1		-
	- 1 0 1	-				-	++	-	-	-	-	_	-	-	_	-	+	10	-	-	-	-		1	-	+	-	+	+	-
		1	-			-	++	-	-		-	-	-	-	3	1	-	4	201	14	4	ny	ou	4	-	+	+	+	+	-
		-	-	-		-	++	+	-	-	-	-			-	+	+	+	+	+	-	+	+	+	-	-	+	i		-
WE	ST	DI	E.h	4		-		-	-		-	-	-		-	-	+	+	+	+	+	-	+	+	+	1	ī		1	-
++	-	+	-	-		-		0	-		-	-	1	-	-	-	-	-	14	1	-		AA	5	-	ER	ret	-	+	-0
	107			2		-	++	1	EA	F	-4	a	-	0	N	10	24	-	40	4	-			-	-	-	-	+	+	
	OPE			0	,		++	-	+		20		-	Ale		A	00		1	1	1	-	-	-		+	+	+	+	
11	NO	P	1	6			++	+	+		-0	- 1		VE	-	//		+	-	1	1		1	-		-	1		+	
		+	-	-		-		-	-		10	+	1	1.	-	: 12	,	d	R	1	24	- 1	EA			1	+	+	1	
+		+	-	-			++	-	1		-	-			-	14	+	7	-	1	-	-1		1			1	1	+	
+	+	-	-					-	-		12	+	2	23	11	24	11	1	FS	1	HO	04	EA	R	F	the	out	5	1	-
+		+	1	-			11	+	1		i -		17	_	Los		C	-	.5	_	-			-		M			+	Ē
		+	-			-		1			•	1		-			-		5	_	_					FA		1	1	
+ 1	-	+	1				++		1								1		-		-	-0		-	-			1	1	Ū
sw	Dm	te	1				++			-												1					1			
	1	1	1			-	$\uparrow \uparrow$											1											1	
1.00	OTH	-	h'					P	AN	F	L	w	-	ro.	UT	21	NV2	ZN	6	0	RA	IN	10	C	AR	EA	S			
Kin	PE	- 2	20	57.	7	20	11	1	T	1	-																			
	u be						11		1		10	c	4	20	-	4 4	JE	57	-	RE	A	1	1	1.1						
1			T					1		1	1											1.5		161						
	- 13	1		E		12212					46		10	+	111			16	70	FS		12	5-	YEA	k)	1				
											ľ																			
1.1		1						1			94	+	20	+	20	59	1	3	23	cf	(100	-4	EA	e	FAI	10	w)	-	1
10		1	1-			1210	TT		T		Γ		Γ	Γ		F		S	2	12	-		-	-			_	AN	0	
																C	12	.4	the	50	100	- Y	EAI	A.F	m	kor	(ب			
MAIN	1 CH	m	NE	-													4													
11		I	T	i																										L
W	DTH	1~	20	1'1	411	1		Pe	AX	F	10	w	-0	PA	T	10	VT	N	4	DR	AN	VA	E	A	RE	#5				
	DPE													1.1				-				-								
MA	NID	EP	74 -	+	6	1		1	¢,	20	+	30	+	4	¢+	E	457	+	N	E+	N	RT	+ +	w	ES7	+	BA	sm	1 1	
1		1																		-										
11		1				24			18	BT	C	FS	+	8	+	1	2		90	5	EF	5	(2	5	YR	0				
	1 by	T		1						18						21	-	-	164			-		1		F	ne	ow) -	
-		1						1	1	1	1		L	10	1												1			
11		1					TT		1	1				11	FLO	es.	Q	12.	6 1	RS	16	25.	YEI	AR	Y	AN.	60	212	2.6	H

744 Heartland Trail Madison, WI 53717-1934 Tel. (608) 831-4444 • Fax (608) 831-3334

SHEET 3 OF 3

PROJECT / PROPOSAL NAME / LOCATION:		PROJECT / PROPOSAL NO.
SUBJECT: Dairyland Power Coop		3081.40
PREPARED BY:	DATE: 9 00	FINAL D
CHECKED BY:	DATE:	REVISION D

AREA IG DITCH

PEAK FLOW - CONTRIBUTING DRAINAGE AREA = 15 CFS FLOW FROM LF.

PHASE 2 DITCH

WIOTAL: V-NOTCH SLOPE : 6% MIN DEPTH: 2'

Width - V-NOTCH

SLOPE . 8%

MIN DEPTH = 4'

PEAK FLOW - CONTRIBUTING DRAINAGE ARED

~ 1.5 ACRES DF PHASE Z LOVER DRAINAGE AREA -1C = 42 ACRES $\frac{1.5}{42}$ (96 CFs) = 3.4 CFs

USE 4 CFS

Page 1 of 4

Analysis By:

Jser Information:	Generated by EC-Design:
Bernie Krantz RMT, Inc. 744 Heartland Trail	SYNTHETIC INDUSTRIES
	Geosynthetic Products Division
Madison, WI 53717	4019 Industry Drive • Chattanooga, TN 37416 • USA (423) 899-0444 • (800) FIX-SOIL www.fixsoil.com

General Information:

Project Details:		Project Notes:
Project Name: Description:	DPC Plan of Operation Channel Lining	
State\Country:	WI	
City:	La Crosse	
Units:	English	
Created:	01/19/99 @ 10:43	
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	

Disclaimer:

The information presented herein is for general information only. While every effort has been made to ensure its accuracy, this information should not be used for a specific application without independent professional examination and verification of its suitability, applicability and accuracy.

Channel Analysis Information:

Channel Analysis Name: South Spillway

Name:

Channel Geometry & Hydraulics:

Bed Slope (ft/ft):0.20000Req. Freeboard (ft):0.00Channel Length (ft):270.00Bottom Width (ft):20.00
Channel Depth (ft): 4.00
Soll Filled:
Soil Filled: No
÷.

Analysis Results:

	Note and	和広場は自然のまた	自己の で しゅうり	Velocity		TRA LINGER	Shear S	tress (lbs/	saft)	Flow	and the second second	17. P
	Side	Lining Type	Manning's "n"	Actual	Max. Allowed	Safety Factor	Actual	Max. Allowed	Safety Factor	Depth (ft)	Discharge (cfs)	0K7
	Left:	PYRAMAT	0.0280	24.0	23.3	1.0	20.2	9.4	0.5			
Analysis #1	Bottom	PYRAMAT	0.0280	27.3	23.3	0.9	26.0	9.4	0.4	2.0857	1374.0	No
	Right:	PYRAMAT	0.0280	24.0	23.3	1.0	20.2	9.4	0.5			
	Left:	GABIONS	0.0270	28.6	17.0	0.6	17.3	35.0	2.0	-	-	
Analysis #2	Bottom	GABIONS	0.0270	32.6	17.0	0.5	22.4	35.0	1.6	1.7968	1374.0	No
	Right:	GABIONS	0.0270	28.6	17.0	0.6	17.3	35.0	2.0			
1.1.1	Left:	ROCK RIPRAP	0.0300	26.6	50.0	1.9	18.3	45.0	2.5			
Analysis #3	Bottom	ROCK RIPRAP	0.0300	30.4	50.0	1.6	23.8	45.0	1.9	1.9093	1374.0	Yes
Control Control	Right:	ROCK RIPRAP	0.0300	26.6	50.0	1.9	18.3	45.0	2.5			100
							-					

	Flow Area (sq ft)	Hydraulic Radius (ft)	Composite 'n*	Left Wetted Perimeter(ft)	Right Wetted Perimeter(ft)	Total Wetted Perimeter(ft)	Average Veleocity (ft/s)	Average Discharge (cfs)	Froude
Analysis #1	50.4146	1.7190	0.0351	4.6638	4.6638	29.3276	27.2540	1374.0	3.06
Analysis #2	42.3935	1.5121	0.0270	4.0178	4.0178	28.0356	32.4106	1374.0	3.94
Analysis #3	45.4772	1.5935	0.0300	4.2694	4.2694	28.5387	30.2130	1374.0	3.55

Page 2 of 4

Channel Analysis Information:

Channel Analysis Name: SE Ditch (2%)

Name:

Channel Geometry & Hydraulics:

Design By:	Flow/Velocity:	Channel Geometry:
Designed By: FLOW Channel Side Slopes: Left Slope (xH:1V): 2.00 Right Slope (xH:1V): 2.00	Discharge (cfs): 1374.00 Flow Duration (hrs): 1.00 Average Velocity (ft/s): 0.00	Bed Slope (ft/ft):0.02000Req. Freeboard (ft):0.00Channel Length (ft):200.00Bottom Width (ft):20.00Channel Depth (ft):5.00
Channel Bend:	Vegetation:	Soil Filled:
Channel Bend: No Bend Radius (ft): 0.00 Outside Bend:	Vegetated: Yes Vegetation Class: C	Soil Filled: No
Factor of Safety: 1.10		Functional Longevity: 999

Analysis Results:

Tan Sala and		and the second	2 Martine	Velocity	(ft/s)	ar galance an	Shear St	ress (lbs/s	aft)	Flow		The A Street
	Side	Lining Type	Manning's "n"	Actual	Max. Allowed	Safety Factor	Actual	Max. Allowed	Safety Factor	Depth (ft)	Discharge (cfs)	OK?
	Left:	LANDLOK TRM	0.0250	10.0	16.5	1.6	4.2	4.7	1.1	1		
Analysis #1	Bottom	LANDLOK TRM	0.0250	11.3	16.5	1.5	5.3	4.7	0.9	4.2678	1374.0	No
	Right:	LANDLOK TRM 435	0.0250	10.0	16.5	1.6	4.2	4.7	1.1			
	Left:	LANDLOK TRM	0.0250	10.0	16.8	1.7	4.2	6.5	1.6	(
Analysis #2	Bottom	LANDLOK TRM	0.0250	11.3	16.8	1.5	5.3	6.5	1.2	4.2678	1374.0	Yes
	Right:	LANDLOK TRM	0.0250	10.0	16.8	1.7	4.2	6.5	1.6		1221	
	Left:		0.0000	0.0	0.0	0.0	0.0	0.0	0.0			-
Analysis #3	Bottom		0.0000	0.0	0.0	0.0	0.0	0.0	0.0	0.0000	0.0	No
	Right:		0.0000	0.0	0.0	0.0	0.0	0.0	0.0			1.14

	Flow Area (sq ft)	Hydraulic Radius (ft)	Composite 'n'	Left Wetted Perimeter(ft)	Right Wetted Perimeter(ft)	Total Wetted Perimeter(ft)	Average Veleocity (ft/s)	Average Discharge (cfs)	Froude
Analysis #1	121.7841	3.1158	0.0397	9.5431	9.5431	39.0862	11.2823	1374.0	.890
Analysis #2	121.7841	3.1158	0.0397	9.5431	9.5431	39.0862	11.2823	1374.0	.890
Analysis #3	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0	.000

Channel Analysis Information:

Name:

Channel Analysis Name: SE Ditch (5%)

Channel Geometry & Hydraulics:

Design By:	Flow/Velocity:	Channel Geometry:
Designed By: FLOW Channel Side Slopes: Left Slope (xH:1V): 2.00	Discharge (cfs): 1374.00 Flow Duration (hrs): 1.00 Average Velocity (ft/s): 0.00	Bed Slope (ft/ft):0.05000Req. Freeboard (ft):0.00Channel Length (ft):750.00Bottom Width (ft):20.00Channel Depth (ft):5.00
Right Slope (xH:1V); 2.00	Vegetation:	Soil Filled:
Channel Bend: No Bend Radius (ft): 0.00 Outside Bend:	Vegetated: Yes Vegetation Class: C	Soll Filled: No
Outside Bend: Factor of Safety: 1.10		Functional Longevity: 999

Analysis Results:

The second		的原始主要的影		Velocity			Shear S	tress (Ibs/s		Flow		
	Side	Lining Type	Manning's "n"	Actual	Max. Allowed	Safety Factor	Actual	Max. Allowed	Safety Factor	Depth (ft)	Discharge (cfs)	OK
1.000-00	Left:	LANDLOK TRM	0.0260	14.3	19.1	1.3	7.8	7.5	1.0	1.0	1.001	
Analysis #1	Bottom	LANDLOK TRM	0.0260	16.2	19.1	1.2	10.0	7.5	0.8	3.2178	1374.0	No
	Right:	LANDLOK TRM	0.0260	14.3	19.1	1.3	7.8	7.5	1.0	1.1		
C	Left:	PYRAMAT	0.0280	14.3	23.3	1.6	7.8	9.4	1.2			-
Analysis #2	Bottom	PYRAMAT	0.0280	16.2	23.3	1.4	10.0	9.4	0.9	3.2184	1374.0	No
	Right:	PYRAMAT	0.0280	14.3	23.3	1.6	7.8	9.4	1.2	1.2		
1	Left:	ROCK RIPRAP	0.0300	17.6	50.0	2.8	6.6	45.0	6.8		1	
Analysis #3	Bottom	ROCK RIPRAP	0.0300	19.9	50.0	2.5	8.5	45.0	5.3	2.7285	1374.0	Yes
101101	Right:	ROCK RIPRAP	0.0300	17.6	50.0	2.8	6.6	45.0	6.8			
		and the second second		Address of the second			1.					

	Flow Area (sq ft)	Hydraulic Radius (ft)	Composite 'n'	Left Wetted Perimeter(ft)	Right Wetted Perimeter(ft)	Total Wetted Perimeter(ft)	Average Veleocity (ft/s)	Average Discharge (cfs)	Froude
Analysis #1	85.0635	2.4735	0.0378	7.1952	7.1952	34.3903	16.1526	1374.0	1.47
Analysis #2	85.0856	2.4739	0.0378	7.1967	7.1967	34.3933	16.1484	1374.0	1.47
Analysis #3	69.4578	2.1569	0.0280	6.1010	6.1010	32.2020	19.7818	1374.0	1.96

Page 2 of 4

Channel Analysis Information:

Channel Analysis Name: SE Ditch (1%)

Name:

Channel Geometry & Hydraulics:

Design By:	Flow/Velocity:	Channel Geometry;
Designed By: FLOW Channel Side Slopes: Left Slope (xH:1V): 2.00 Right Slope (xH:1V): 2.00	Discharge (cfs): 1374.00 Flow Duration (hrs): 1.00 Average Velocity (ft/s): 0.00	Bed Slope (ft/ft):0.01000Req. Freeboard (ft):0.00Channel Length (ft):1000.0Bottom Width (ft):20.00Channel Depth (ft):6.00
Channel Bend:	Vegetation:	Soil Filled:
Channel Bend: No Bend Radius (ft): 0.00 Outside Bend:	Vegetated: Yes Vegetation Class: C	Soil Filled: No
Factor of Safety: 1.10		Functional Longevity: 999

Analysis Results:

				Velocity		HAN IN THE	Shear Si	ress (lbs/s	saft)	Flow	S Deventor Viente	alan ya si g
	Side	Lining Type	Manning's	Actual	Max. Allowed	Safety Factor	Actual	Max. Allowed	Safety Factor	Depth (ft)	Discharge (cfs)	OK?
	Left:	LANDLOK TRM	0.0250	7.7	16.5	2.2	2.6	4.7	1.8			1
Analysis #1	Bottom	LANDLOK TRM	0.0250	8.6	16.5	1.9	3.3	4.7	1.4	5.2542	1374.0	Yes
Rig	Right:	LANDLOK TRM 435	0.0250	7.7	16.5	2.2	2.6	4.7	1.8		101 10	
	Left:		0.0000	0.0	0.0	0.0	0.0	0.0	0.0	1.000	1.000	1
Analysis #2	Bottom		0.0000	0.0	0.0	0.0	0.0	0.0	0.0	0.0000	0.0	No
	Right:		0.0000	0.0	0.0	0.0	0.0	0.0	0.0			
	Left:		0.0000	0.0	0.0	0.0	0.0	0.0	0.0			
Analysis #3	Bottom		0.0000	0.0	0.0	0.0	0.0	0.0	0.0	0.0000	0.0	No
	Right:		0.0000	0.0	0.0	0.0	0.0	0.0	0.0		1.00	

	Flow Area (sq ft)	Hydraulic Radius (ft)	Composite 'n'	Left Wetted Perimeter(ft)	Right Wetted Perimeter(ft)	Total Wetted Perimeter(ft)	Average Veleocity (ft/s)	Average Discharge (cfs)	Froude
Analysis #1	160.2976	3.6852	0.0413	11.7488	11.7488	43.4975	8.5716	1374.0	.615
Analysis #2	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0	.000
Analysis #3	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0	.000

Channel Analysis Information:

Channel Analysis Name: NE Ditch

Name:

Channel Geometry & Hydraulics:

Bed Slope (ft/ft): 0.02000 Req. Freeboard (ft): 0.00 Channel Length (ft): 1800.0		
Bottom Width (ft): 10.00		
Channel Depth (ft): 5.00 Soll Filled:		
Soil Filled: No		

Analysis Results:

Million State Strategy		N 1997 E. 3	A SHIER WAS	Velocity		3 1 N	Shear St	ress (lbs/	sqft)	Flow		Par Su
之中的。	Side	Lining Type	Manning's "n"	Actual	Max. Allowed	Safety Factor	Actual	Max. Allowed	Safety Factor	Depth (ft)	Discharge (cfs)	OK?
	Left:	LANDLOK TRM	0.0250	7.1	16.5	2.3	3.1	4.7	1.5	11.00		
Analysis #1	Bottom	LANDLOK TRM	0.0250	7.9	16.5	2.1	3.9	4.7	1.2	3.1235	399.0	Yes
	Right:	LANDLOK TRM 435	0.0250	7.1	16.5	2.3	3.1	4.7	1.5			
	Left:	1.1.1	0.0000	0.0	0.0	0.0	0.0	0.0	0.0	L mm -		1
Analysis #2	Bottom		0.0000	0.0	0.0	0.0	0.0	0.0	0.0	0.0000	0.0	No
	Right:		0.0000	0.0	0.0	0.0	0.0	0.0	0.0		1993	
A	Left:		0.0000	0.0	0.0	0.0	0.0	0.0	0.0			
Analysis #3	Bottom	Sec. 1. 1. 1. 1.	0.0000	0.0	0.0	0.0	0.0	0.0	0.0	0.0000	0.0	No
	Right:		0.0000	0.0	0.0	0.0	0.0	0.0	0.0			
		1	1 and a second				1.					

		Flow Area (sq ft)	Hydraulic Radius (ft)	Composite 'n'	Left Wetted Perimeter(ft)	Right Wetted Perimeter(ft)	Total Wetted Perimeter(ft)	Average Veleocity (ft/s)	Average Discharge (cfs)	Froude
	Analysis #1	50.7483	2.1173	0.0440	6.9844	6.9844	23.9689	7.8623	399.0	.735
Ī	Analysis #2	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0	.000
•	Analysis #3	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0	.000

Page 2 of 4

Channel Analysis Information:

Channel Analysis Name: East Ditch

Name:

Channel Geometry & Hydraulics:

Design By:	Flow/Velocity:	Channel Geometry:
Designed By: FLOW Channel Side Stopes: Left Slope (xH:1V): 2.00 Right Slope (xH:1V): 2.00	Discharge (cfs): 509.00 Flow Duration (hrs): 1.00 Average Velocity (ft/s): 0.00	Bed Slope (ft/ft):0.02000Req. Freeboard (ft):0.00Channel Length (ft):350.00Bottom Width (ft):10.00Channel Depth (ft):5.00
Channel Bend:	Vegetation:	Soil Filled:
Channel Bend:YesBend Radius (ft):200.00Outside Bend:L	Vegetated: Yes Vegetation Class: C	Soll Filled: No
Factor of Safety: 1.10		Functional Longevity: 999

Analysis Results:

	10 J.		The second section	Velocity			Shear St	ress (lbs/s	sqft)	Flow	2	(Factor
	Side	Lining Type	Manning's "n"	Actual	Max. Allowed	Safety Factor	Actual	Max. Allowed	Safety Factor	Depth (ft)	Discharge (cfs)	OK7
	Left:	LANDLOK TRM	0.0250	7.8	16.5	2.1	3.6	4.7	1.3	-		
Analysis #1	Bottom	LANDLOK TRM	0.0250	8.6	16.5	1.9	4.4	4.7	1.1	3.4942	509.0	No
	Right:	LANDLOK TRM	0.0250	7.8	16.5	2.1	3.6	4.7	1.3	and the second		
	Left:	LANDLOK TRM	0.0250	7.8	16.8	2.2	3.6	6.5	1.8			
Analysis #2	Bottom	LANDLOK TRM	0.0250	8.6	16.8	1.9	4.4	6.5	1.5	3.4942	509.0	Yes
	Right:	LANDLOK TRM 450	0.0250	7.8	16.8	2.2	3.6	6.5	1.8			
	Left:		0.0000	0.0	0.0	0.0	0.0	0.0	0.0			
Analysis #3	Bottom		0.0000	0.0	0.0	0.0	0.0	0.0	0.0	0.0000	0.0	No
	Right:		0.0000	0.0	0.0	0.0	0.0	0.0	0.0	Pro Paris		

	Flow Area (sq ft)	Hydraulic Radius (ft)	Composite 'n'	Left Wetted Perimeter(ft)	Right Wetted Perimeter(ft)	Total Wetted Perimeter(ft)	Average Veleocity (ft/s)	Average Discharge (cfs)	Froude
Analysis #1	59.3615	2.3164	0.0429	7.8133	7.8133	25.6267	8.5746	509.0	.760
Analysis #2	59.3615	2.3164	0.0429	7.8133	7.8133	25.6267	8.5746	509.0	.760
Analysis #3	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0	.000

Channel Analysis Information:

Name: Channel Analysis Name: NW Ditch

Channel Geometry & Hydraulics:

Design By:	Flow/Velocity:	Channel Geometry:		
Designed By: FLOW Channel Side Slopes: Left Slope (xH:1V): 2.00 Right Slope (xH:1V): 2.00	Discharge (cfs): 73.00 Flow Duration (hrs): 1.00 Average Velocity (ft/s): 0.00	Bed Slope (ft/ft):0.01000Req. Freeboard (ft):0.00Channel Length (ft):1000.0Bottom Width (ft):0.01Channel Depth (ft):4.00		
Channel Bend:	Vegetation:	Soil Filled:		
Channel Bend: No Bend Radius (ft): 0.00 Outside Bend:	Vegetated: Yes Vegetation Class: C	Soil Filled: No		
Factor of Safety: 1.10		Functional Longevity: 999		

Analysis Results:

	A1 22	and the second	Stand I Town States	Velocity		ABS ES V	Shear St	ress (lbs/s		Flow		- Andrea
	Side	Lining Type	Manning's "n"	Actual	Max. Allowed	Safety Factor	Actual	Max. Allowed	Safety Factor	Depth (ft)	Discharge (cfs)	OK?
	Left:	LANDLOK TRM	0.0250	3.4	16.5	4.8	2.1	4.7	2.3	1.		
Analysis #1	Bottom	LANDLOK TRM	0.0250	3.4	16.5	4.8	2.0	4.7	2.3	3.2826	73.0	Yes
	Right:	LANDLOK TRM	0.0250	3.4	16.5	4.8	2.1	4.7	2.3	CE VICE	12	
S. Contra	Left:		0.0000	0.0	0.0	0.0	0.0	0.0	0.0			1
Analysis #2	Bottom	1	0.0000	0.0	0.0	0.0	0.0	0.0	0.0	0.0000	0.0	No
	Right:		0.0000	0.0	0.0	0.0	0.0	0.0	0.0			
1	Left:		0.0000	0.0	0.0	0.0	0.0	0.0	0.0			
Analysis #3	Bottom		0.0000	0.0	0.0	0.0	0.0	0.0	0.0	0.0000	0.0	No
1.122	Right:		0.0000	0.0	0.0	0.0	0.0	0.0	0.0	10000000		
			A	A								

	Flow Area (sq ft)	Hydraulic Radius (ft)	Composite 'n'	Left Wetted Perimeter(ft)	Right Wetted Perimeter(ft)	Total Wetted Perimeter(ft)	Average Veleocity (ft/s)	Average Discharge (cfs)	Froude
Analysis #1	21.5836	1.4693	0.0564	7.3401	7.3401	14.6902	3.3822	73.0	.331
Analysis #2	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0	.000
Analysis #3	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0	.000

Page 2 of 4

Channel Analysis Information:

Channel Analysis Name: West Ditch

Name:

Channel Geometry & Hydraulics:

Design By:	Flow/Velocity:	Channel Geometry:		
Designed By: FLOW Channel Side Slopes: Left Slope (xH:1V): 2.00 Right Slope (xH:1V): 2.00	Discharge (cfs): 241.00 Flow Duration (hrs): 1.00 Average Velocity (ft/s): 0.00	Bed Slope (ft/ft):0.06000Req. Freeboard (ft):0.00Channel Length (ft):1020.0Bottom Width (ft):10.00Channel Depth (ft):6.00		
Channel Bend:	Vegetation:	Soll Filled:		
Channel Bend: No Bend Radius (ft): 0.00 Outside Bend:	Vegetated: Yes Vegetation Class: C	Soil Filled: No		
Factor of Safety: 1.10		Functional Longevity: 999		

Analysis Results:

an a	1.00		1 Charles II	Velocity		Statement and	Shear S	tress (lbs/s	aft)	Flow	The second with the	14.34		
	Side	Lining Type	Lining Type	Lining Type "n"	Manning's "n"	Actual	Max. Allowed	Safety Factor	Actual	Max. Allowed	Safety Factor	Depth (ft)	Discharge (cfs)	OK?
	Left:	PYRAMAT	0.0280	8.9	23.3	2.6	5.1	9.4	1.8	1				
Analysis #1	Bottom	PYRAMAT	0.0280	10.1	23.3	2.3	6.6	9.4	1.4	1.7595	241.0	Yes		
		PYRAMAT	0.0280	8.9	23.3	2.6	5.1	9.4	1.8	1 and a				
	Left:	LANDLOK TRM	0.0260	8.9	19.1	2.1	5.1	7.5	1.5					
Analysis #2	Bottom	LANDLOK TRM	0.0260	10.1	19.1	1.9	6.6	7.5	1.1	1.7684	241.0	No		
	Right:	LANDLOK TRM	0.0260	8.9	19.1	2.1	5.1	7.5	1.5					
	Left:		0.0000	0.0	0.0	0.0	0.0	0.0	0.0					
Analysis #3	Bottom		0.0000	0.0	0.0	0.0	0.0	0.0	0.0	0.0000	0.0	No		
	Right:		0.0000	0.0	0.0	0.0	0.0	0.0	0.0	Sector.	1.1.1			

	Flow Area (sq ft)	Hydraulic Radius (ft)	Composite 'n'	Left Wetted Perimeter(ft)	Right Wetted Perimeter(ft)	Total Wetted Perimeter(ft)	Average Veleocity (ft/s)	Average Discharge (cfs)	Froude
Analysis #1	23.7860	1.3312	0.0439	3.9343	3.9343	17.8685	10.1320	241.0	1.24
Analysis #2	23.9376	1.3367	0.0438	3.9541	3.9541	17.9083	10.0679	241.0	1.23
Analysis #3	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0	.000

Channel Analysis Information:

Name:

Channel Analysis Name: SW Ditch (7%)

Channel Geometry & Hydraulics:

Design By:	Flow/Velocity:	Channel Geometry:
Designed By: FLOW Channel Side Slopes: Left Slope (xH:1V): 2.00 Right Slope (xH:1V): 2.00	Discharge (cfs): 323.00 Flow Duration (hrs): 1.00 Average Velocity (ft/s): 0.00	Bed Slope (ft/ft):0.07000Req. Freeboard (ft):0.00Channel Length (ft):225.00Bottom Width (ft):10.00Channel Depth (ft):4.00
Channel Bend:	Vegetation:	Soil Filled:
Channel Bend: No Bend Radius (ft): 0.00 Outside Bend:	Vegetated: Yes Vegetation Class: C	Soil Filled: No
Factor of Safety: 1.10		Functional Longevity: 999

Analysis Results:

	- Angle	· 公司管理:	Same Suite Same	Velocity	(ft/s)	1 2013	Shear St	ress (lbs/s		Flow	247年1月1日	
	Side	Lining Type	Manning's "n"	Actual	Max. Allowed	Safety Factor	Actual	Max. Allowed	Safety Factor	Depth (ft)	Discharge (cfs)	0К?
	Left:	PYRAMAT	0.0280	10.6	23.3	2.2	6.6	9.4	1.4	1.200	1.001	
Analysis #1	Bottom	PYRAMAT	0.0280	12.0	23.3	1.9	8.4	9.4	1.1	1.9335	323.0	No
	Right:	PYRAMAT	0.0280	10.6	23.3	2.2	6.6	9.4	1.4	1000	12.00	
5.77.27	Left:	ROCK RIPRAP	0.0300	13.4	50.0	3.7	5.5	45.0	8.2			
Analysis #2	Bottom	ROCK RIPRAP	0.0300	15.2	50.0	3.3	7.1	45.0	6.4	1.6178	323.0	Yes
	Right:	ROCK RIPRAP	0.0300	13.4	50.0	3.7	5.5	45.0	8.2			
	Left:		0.0280	0.0	0.0	0.0	0.0	0.0	0.0	1	1	
Analysis #3	Bottom		0.0000	0.0	0.0	0.0	0.0	0.0	0.0	0.0000	0.0	No
Conserved a	Right:		0.0000	0.0	0.0	0.0	0.0	0.0	0.0	1.00		
			and the second	1.			1				1 million 1	1.2

	Flow Area (sq ft)	Hydraulic Radius (ft)	Composite 'n'	Left Wetted Perimeter(ft)	Right Wetted Perimeter(ft)	Total Wetted Perimeter(ft)	Average Veleocity (ft/s)	Average Discharge (cfs)	Froude
Analysis #1	26.8125	1.4379	0.0419	4.3235	4.3235	18.6470	12.0466	323.0	1.40
Analysis #2	21.4118	1.2424	0.0300	3.6174	3.6174	17.2348	15.0851	323.0	1.94
Analysis #3	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0	.000

Page 2 of 4

Channel Analysis Information:

Channel Analysis Name: SW Ditch (2%)

Name:

Channel Geometry & Hydraulics:

Design By:	Flow/Velocity:	Channel Geometry:
Designed By: FLOW Channel Side Slopes: Left Slope (xH:1V): 2.00 Right Slope (xH:1V): 2.00	Discharge (cfs): 323.00 Flow Duration (hrs): 1.00 Average Velocity (ft/s): 0.00	Bed Slope (ft/ft):0.02000Req. Freeboard (ft):0.00Channel Length (ft):300.00Bottom Width (ft):10.00Channel Depth (ft):4.00
Channel Bend:	Vegetation:	Soil Filled:
Channel Bend: No Bend Radius (ft): 0.00 Outside Bend:	Vegetated: Yes Vegetation Class: C	Soil Filled: No
Factor of Safety: 1.10		Functional Longevity: 999

Analysis Results:

	Citiz .	Manning's				Safety				Flow Depth	Discharge	i dia Mari
	Side	Lining Type "n"	Actual	Allowed	Factor	Actual	Allowed	Factor	(ft)	(cfs)	OK?	
	Left:	PYRAMAT	0.0280	6.5	23.3	3.6	2.8	9.4	3.3	1.011.1	1001	
Analysis #1	Bottom:	PYRAMAT	0.0280	7.3	23.3	3.2	3.5	9.4	2.7	2.8325	323.0	Yes
	Right:	PYRAMAT	0.0280	6.5	23.3	3.6	2.8	9.4	3.3		1.28.24.00.20	
Sec. As an	Left:		0.0000	0.0	0.0	0.0	0.0	0.0	0.0	1		
Analysis #2	the second se		0.0000	0.0	0.0	0.0	0.0	0.0	0.0	0.0000	0.0	No
	Right:		0.0000	0.0	0.0	0.0	0.0	0.0	0.0	1.000	1.072	
Cara - S	Left:		0.0000	0.0	0.0	0.0	0.0	0.0	0.0			
Analysis #3			0.0000	0.0	0.0	0.0	0.0	0.0	0.0	0.0000	0.0	No
Right:		0.0000	0.0	0.0	0.0	0.0	0.0	0.0		10000		

	Flow Area (sq ft)	Hydraulic Radius (ft)	Composite 'n'	Left Wetted Perimeter(ft)	Right Wetted Perimeter(ft)	Total Wetted Perimeter(ft)	Average Veleocity (ft/s)	Average Discharge (cfs)	Froude
Analysis #1	44.3719	1.9575	0.0451	6.3337	6.3337	22.6675	7.2794	323.0	.709
Analysis #2	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0	.000
Analysis #3	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0	.000

Page 2 of 4

Channel Analysis Information:

Channel Analysis Name: SW Ditch (5%)

Name:

Channel Geometry & Hydraulics:

Design By:	Flow/Velocity:	Channel Geometry:
Designed By: FLOW Channel Side Slopes: Left Slope (xH:1V): 2.00	Discharge (cfs): 323.00 Flow Duration (hrs): 1.00 Average Velocity (ft/s): 0.00	Bed Slope (ft/ft): 0.05000 Req. Freeboard (ft): 0.00 Channel Length (ft): 240.00 Bottom Width (ft): 10.00
Right Slope (xH:1V): 2.00 Channel Bend:	Vegetation:	Channel Depth (ft): 4.00 Soil Filled:
Channel Bend: No Bend Radius (ft): 0.00 Outside Bend:	Vegetated: Yes Vegetation Class: C	Soil Filled: No
the second s	Vegetation Class: C	Functional Longevity: 999

Analysis Results:

Charles Merry	N. IN T	A CALL STREET	The Street Parts	Velocity			Shear S	ress (lbs/s	saft)	Flow	Maria and	10000
上主范	Side	Lining Type	Manning's "n"	Actual	Max. Allowed	Safety Factor	Actual	Max. Allowed	Safety Factor	Depth (ft)	Discharge (cfs)	OK?
	Left:	PYRAMAT	0.0280	9.3	23.3	2.5	5.2	9.4	1.8	1.2.4	1.1.1	1.00
Analysis #1	Bottom	PYRAMAT	0.0280	10.5	23.3	2.2	6.7	9.4	1.4	2.1429	323.0	Yes
	Right: P	PYRAMAT	0.0280	9.3	23.3	2.5	5.2	9.4	1.8	1. C.	10.00	
	Left:		0.0000	0.0	0.0	0.0	0.0	0.0	0.0		1	
Analysis #2		1.1	0.0000	0.0	0.0	0.0	0.0	0.0	0.0	0.0000	0.0	No
	Right:		0.0000	0.0	0.0	0,0	0.0	0.0	0.0	10-245		
	Left:		0.0000	0.0	0.0	0.0	0.0	0.0	0.0			
Analysis #3	the second se		0.0000	0.0	0.0	0.0	0.0	0.0	0.0	0.0000	0.0	No
	Right:		0.0000	0.0	0.0	0.0	0.0	0.0	0.0	1.000	10.0	

	Flow Area (sq ft)	Hydraulic Radius (ft)	Composite 'n'	Left Wetted Perimeter(ft)	Right Wetted Perimeter(ft)	Total Wetted Perimeter(ft)	Average Veleocity (ft/s)	Average Discharge (cfs)	Froude
Analysis #1	30.6135	1.5632	0.0427	4.7917	4.7917	19.5835	10.5509	323.0	1.17
Analysis #2	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0	.000
Analysis #3	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0	.000

Page 2 of 4

Channel Analysis Information:

Name: Channel Analysis Name: Main Channel

Channel Geometry & Hydraulics:

Design By:	Flow/Velocity:	Channel Geometry:
Designed By: FLOW Channel Side Slopes: Left Slope (xH:1V): 2.00 Right Slope (xH:1V): 2.00	Discharge (cfs): 1660.00 Flow Duration (hrs): 1.00 Average Velocity (ft/s): 0.00	Bed Slope (ft/ft):0.01300Req. Freeboard (ft):0.00Channel Length (ft):3500.0Bottom Width (ft):20.00Channel Depth (ft):6.00
Channel Bend:	Vegetation:	Soll Filled:
Channel Bend: No Bend Radius (ft): 0.00 Outside Bend:	Vegetated: Yes Vegetation Class: C	Soil Filled: No
Factor of Safety: 1.10		Functional Longevity: 999

Analysis Results:

一些一些	Le Marine	Constant of	Velocity		E sale	Shear S	ress (lbs/s	saft)	Flow		Gal and the
Side	Lining Type	Manning's "n"	Actual	Max. Allowed	Safety Factor	Actual	Max. Allowed	Safety Factor	Depth (ft)	Discharge (cfs)	0К7
Left:	LANDLOK TRM	0.0250	9.1	16.5	1.8	3.4	4.7	1.4			
Bottom	LANDLOK TRM	0.0250	10.2	16.5	1.6	4.3	4.7	1.1	5.3260	1660.0	No
Right: LA	LANDLOK TRM	0.0250	9.1	16.5	1.8	3.4	4.7	1,4			
Left:	LANDLOK TRM	0.0250	9.1	16.8	1.8	3.4	6.5	1.9	-		
	ANDLOK TRM 0.0250	0.0250	10.2	16.8	1.6	4.3	.3 6.5	1.5	5.3260	1660.0	Yes
Right:	LANDLOK TRM	0.0250	9.1	16.8	1.8	3.4	6.5	1.9	1.00		
Left:		0.0000	0.0	0.0	0.0	0.0	0.0	0.0			-
Bottom		0.0000	0.0	0.0	0.0	0.0	0.0	0.0	0.0000	0.0	No
Right:		0.0000	0.0	0.0	0.0	0.0	0.0	0.0			
	Left: Bottom: Right: Left: Bottom: Right: Left: Bottom:	Left: Bottom Right: LANDLOK TRM LANDLOK TRM LANDLOK TRM Bottom Right: LaNDLOK TRM LANDLOK TRM LANDLOK TRM LANDLOK TRM	Left: Bottom Right:LANDLOK TRM LANDLOK TRM LANDLOK TRM0.0250 0.0250Left: Bottom Right:LANDLOK TRM LANDLOK TRM LANDLOK TRM 0.02500.0250Left: Bottom Bottom0.0000 0.0000	SideLining TypeManning's "n"ActualLeft: Bottom Right:LANDLOK TRM LANDLOK TRM LANDLOK TRM LANDLOK TRM D.02500.02509.1Left: Bottom Right:LANDLOK TRM LANDLOK TRM LANDLOK TRM D.02500.02509.1Left: Bottom Right:LANDLOK TRM LANDLOK TRM D.02500.02509.1Left: Bottom Bottom0.02509.1Left: Bottom0.00000.0	Side Lining Type "n" Actual Allowed Left: LANDLOK TRM 0.0250 9.1 16.5 Bottom LANDLOK TRM 0.0250 10.2 16.5 Right: LANDLOK TRM 0.0250 9.1 16.5 Left: LANDLOK TRM 0.0250 9.1 16.8 Bottom: LANDLOK TRM 0.0250 9.1 16.8 Bottom: LANDLOK TRM 0.0250 9.1 16.8 Bottom: LANDLOK TRM 0.0250 9.1 16.8 Left: LANDLOK TRM 0.0250 9.1 16.8 Bottom: LANDLOK TRM 0.0250 9.1 16.8 Bottom: LANDLOK TRM 0.0250 9.1 16.8 Left: Bottom: 0.0000 0.0 0.0	Side Lining Type Manning's "n" Max. Actual Max. Allowed Safety Factor Left: LANDLOK TRM 0.0250 9.1 16.5 1.8 Bottom LANDLOK TRM 0.0250 9.1 16.5 1.6 Right: LANDLOK TRM 0.0250 9.1 16.5 1.6 Left: LANDLOK TRM 0.0250 9.1 16.8 1.8 Left: LANDLOK TRM 0.0250 9.1 16.8 1.6 Bottom LANDLOK TRM 0.0250 9.1 16.8 1.6 Bottom LANDLOK TRM 0.0250 9.1 16.8 1.8 Left: LANDLOK TRM 0.0250 9.1 16.8 1.8 Bottom LANDLOK TRM 0.0250 9.1 16.8 1.8 Left: Bottom: 0.00000 0.0 0.0 0.0 Bottom: 0.00000 0.0 0.0 0.0 0.0	Side Lining Type Manning's "n" Actual Max. Allowed Safety Factor Actual Left: LANDLOK TRM 0.0250 9.1 16.5 1.8 3.4 Bottom LANDLOK TRM 0.0250 10.2 16.5 1.6 4.3 Right: LANDLOK TRM 0.0250 9.1 16.5 1.8 3.4 Left: LANDLOK TRM 0.0250 9.1 16.5 1.8 3.4 Left: LANDLOK TRM 0.0250 9.1 16.8 1.8 3.4 Bottom: LANDLOK TRM 0.0250 9.1 16.8 1.8 3.4 Left: LANDLOK TRM 0.0250 9.1 16.8 1.8 3.4 Bottom: LANDLOK TRM 0.0250 9.1 16.8 1.8 3.4 Left: Bottom: 0.0000 0.0 0.0 0.0 0.0 Bottom: Co0000 0.0 0.0 0.0 0.0 0.0	Side Lining Type Manning's "n" Actual Actual Max. Allowed Safety Factor Max. Actual Max. Allowed Left: LANDLOK TRM LANDLOK TRM 0.0250 9.1 16.5 1.8 3.4 4.7 Bottom Right: LANDLOK TRM LANDLOK TRM 0.0250 9.1 16.5 1.6 4.3 4.7 Left: LANDLOK TRM 0.0250 9.1 16.5 1.8 3.4 4.7 Left: LANDLOK TRM 0.0250 9.1 16.8 1.8 3.4 6.5 Bottom Right: LANDLOK TRM 0.0250 9.1 16.8 1.8 3.4 6.5 Left: LANDLOK TRM 0.0250 9.1 16.8 1.8 3.4 6.5 Left: LANDLOK TRM 0.0250 9.1 16.8 1.8 3.4 6.5 Left: Bottom 0.0000 0.0 0.0 0.0 0.0 0.0 Bottom 0.0000 0.0 0.0 0.0 0.0 <	Side Lining Type Manning's "n" Max. Actual Safety Allowed Max. Factor Max. Actual Safety Actual Factor Left: Bottom Right: LANDLOK TRM LANDLOK TRM 0.0250 9.1 16.8 1.8 3.4 6.5 1.9 Left: Bottom Right: LANDLOK TRM 0.0250 9.1 16.8 1.6 4.3 6.5 1.5 Left: Bottom 0.0250 9.1 16.8 1.8 3.4 6.5 1.9 Left: Bottom 0.0000 0.0 0.0 0.0 0.0 0.0 0.0 0.0	Side Lining Type Manning's "n" Actual Actual Max. Allowed Safety Factor Max. Allowed Safety Factor Depth (ft) Left: Bottom Right: LANDLOK TRM LANDLOK TRM LANDLOK TRM 0.0250 9.1 16.5 1.8 3.4 4.7 1.4 5.3260 Left: Bottom Right: LANDLOK TRM LANDLOK TRM 0.0250 9.1 16.5 1.8 3.4 4.7 1.4 5.3260 Left: Bottom Right: LANDLOK TRM LANDLOK TRM 0.0250 9.1 16.8 1.8 3.4 6.5 1.9 5.3260 Left: Bottom Right: LANDLOK TRM LANDLOK TRM 0.0250 9.1 16.8 1.8 3.4 6.5 1.9 5.3260 Left: Bottom Right: LANDLOK TRM 0.0250 9.1 16.8 1.8 3.4 6.5 1.9 5.3260 Left: Bottom: 0.0000 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	Side Lining Type Manning's "n" Max. Actual Safety Allowed Max. Factor Max. Actual Safety Actual Depth Actual Depth (ft) Discharge (cfs) Left: LANDLOK TRM LANDLOK TRM Right: 0.0250 9.1 16.5 1.8 3.4 4.7 1.4 5.3260 1660.0 Left: LANDLOK TRM LANDLOK TRM 0.0250 9.1 16.5 1.6 4.3 4.7 1.4 5.3260 1660.0 Left: LANDLOK TRM LANDLOK TRM 0.0250 9.1 16.5 1.8 3.4 4.7 1.4 5.3260 1660.0 Left: LANDLOK TRM Bottom 0.0250 9.1 16.8 1.8 3.4 6.5 1.9 5.3260 1660.0 Left: LANDLOK TRM 0.0250 9.1 16.8 1.8 3.4 6.5 1.9 5.3260 1660.0 Left: Bottom: LANDLOK TRM 0.0250 9.1 16.8 1.8 3.4 6.5 1.9 5.3260 1660.0 <tr< td=""></tr<>

	Flow Area (sq ft)	Hydraulic Radius (ft)	Composite 'n'	Left Wetted Perimeter(ft)	Right Wetted Perimeter(ft)	Total Wetted Perimeter(ft)	Average Veleocity (ft/s)	Average Discharge (cfs)	Froude
Analysis #1	163.2521	3.7256	0.0400	11.9093	11.9093	43.8185	10.1683	1660.0	.723
Analysis #2	163.2521	3.7256	0.0400	11.9093	11.9093	43.8185	10.1683	1660.0	.723
Analysis #3	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0	.000

Channel Analysis Information:

Name:

Channel Analysis Name: Area 1G Ditch

Channel Geometry & Hydraulics:

Design By:	Flow/Velocity:	Channel Geometry:
Designed By: FLOW Channel Side Slopes: Left Slope (xH:1V): 2.00 Right Slope (xH:1V): 2.00	Discharge (cfs): 15.00 Flow Duration (hrs): 1.00 Average Velocity (ft/s): 0.00	Bed Slope (ft/ft):0.08000Req. Freeboard (ft):0.00Channel Length (ft):140.00Bottom Width (ft):0.10Channel Depth (ft):4.00
Channel Bend:	Vegetation:	Soll Filled:
Channel Bend: No Bend Radius (ft): 0.00 Outside Bend:	Vegetated: Yes Vegetation Class: C	Soil Filled: No
Factor of Safety: 1.10		Functional Longevity: 999

Analysis Results:

a de transfilia	a) - 0	·····································	1 A. C. S. S. S.	Velocity			Shear St	tress (lbs/		Flow	a liter and the second	(Section 2)
	Side	Lining Type	Manning's "n"	Actual	Max. Allowed	Safety Factor	Actual	Max. Allowed	Safety Factor	Depth (ft)	Discharge (cfs)	OK?
	Left:	LANDLOK TRM	0.0250	4.7	16.5	3.5	6.3	4.7	0.8	1.00	1.1	1.1
Analysis #1	Bottom:	LANDLOK TRM	0.0250	4.6	16.5	3.5	6.2	4.7	0.8	1.2450	15.0	No
	Right:	LANDLOK TRM	0.0250	4.7	16.5	3.5	6.3	4.7	0.8	11.22	2.1.1	
1986	Left:	LANDLOK TRM	0.0250	4.7	16.8	3.6	6.3	6.5	1.0			
Analysis #2	Bottom	LANDLOK TRM	0.0250	4.6	16.8	3.6	6.2	6.5	1.1	1.2450	15.0	No
1000	Right:	LANDLOK TRM	0.0250	4.7	16.8	3.6	6.3	6.5	1.0			
	Left:	PYRAMAT	0.0280	4.7	23.3	5.0	6.3	9.4	1.5			
Analysis #3	Bottom	PYRAMAT	0.0280	4.7	23.3	5.0	6.2	9.4	1.5	1.2502	15.0	Yes
	Right:	PYRAMAT	0.0280	4.7	23.3	5.0	6.3	9.4	1.5	1.1		
		the second se	De Circus	1			and the second second			the second second	- 1	

	Flow Area (sq ft)	Hydraulic Radius (ft)	Composite 'n'	Left Wetted Perimeter(ft)	Right Wetted Perimeter(ft)	Total Wetted Perimeter(ft)	Average Veleocity (ft/s)	Average Discharge (cfs)	Froude
Analysis #1	3.2247	0.5689	0.0624	2.7840	2.7840	5.6680	4.6516	15.0	.737
Analysis #2	3.2247	0.5689	0.0624	2.7840	2.7840	5.6680	4.6516	15.0	.737
Analysis #3	3.2511	0.5713	0.0622	2.7956	2.7956	5.6912	4.6138	15.0	.741

Page 2 of 4

Channel Analysis Information:

Channel Analysis Name: Phase 2 Ditch

Name:

Channel Geometry & Hydraulics:

Design By:	Flow/Velocity:	Channel Geometry:
Designed By: FLOW Channel Side Slopes: Left Slope (xH:1V): 4.00 Right Slope (xH:1V): 2.00	Discharge (cfs): 4.00 Flow Duration (hrs): 1.00 Average Velocity (ft/s): 0.00	Bed Slope (ft/ft):0.06000Req. Freeboard (ft):0.00Channel Length (ft):560.00Bottom Width (ft):0.01Channel Depth (ft):2.00
Channel Bend:	Vegetation:	Soll Filled:
Channel Bend: No Bend Radius (ft): 0.00 Outside Bend:	Vegetated: Yes Vegetation Class: C	Soil Filled: No
Factor of Safety: 1.10		Functional Longevity: 999

Analysis Results:

1. 如此	大学の	COULD BE AVERAGE AND	ALCONTRACTOR OF	Velocity	(ft/s)	and the second	Shear St	tress (lbs/s	saft)	Flow	1 1 1 1 1 1 1	See 22
	Side	Lining Type	Manning's "n"	Actual	Max. Allowed	Safety Factor	Actual	Max. Allowed	Safety Factor	Depth (ft)	Discharge (cfs)	ОК?
	Left:	LANDLOK TRM	0.0250	2.3	16.5	7.1	4.0	4.7	1.2		1	1
Analysis #1	Bottom	LANDLOK TRM	0.0250	2.0	16.5	8.1	3.1	4.7	1.5	0.8207	4.0	Yes
	Right:	LANDLOK TRM	0.0250	2.1	16.5	8.0	3.1	4.7	1.5		140	
0.0000	Left:		0.0000	0.0	0.0	0.0	0.0	0.0	0.0	1		1
Analysis #2	Bottom		0.0000	0.0	0.0	0.0	0.0	0.0	0.0	0.0000	0.0	No
	Right:		0.0000	0.0	0.0	0.0	0.0	0.0	0.0			
1.000	Left:		0.0000	0.0	0.0	0.0	0.0	0.0	0.0			
Analysis #3	Bottom		0.0000	0.0	0.0	0.0	0.0	0.0	0.0	0.0000	0.0	No
	Right:		0.0000	0.0	0.0	0.0	0.0	0.0	0.0		1000	1007

建港板	Flow Area (sq ft)	Hydraulic Radius (ft)	Composite 'n'	Left Wetted Perimeter(ft)	Right Wetted Perimeter(ft)	Total Wetted Perimeter(ft)	Average Veleocity (ft/s)	Average Discharge (cfs)	Froude
Analysis #1	2.0287	0.3880	0.0955	3.3837	1.8351	5.2288	1.9717	4.0	.415
Analysis #2	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0	.000
Analysis #3	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0	.000

Suggested Vegetation for: La Crosse,WI

Species	Scentific Name	Retardance Class	Seed Rate (Ibs/ac)	Height at Maturity (in)	Recommended Planting Dates
Alsike Clover	Trifolium hybridum	A - E	15	And all the sound of the state of the sound	4/1 - 5/31 or8/16 - 10/15
Reed Canarygrass	Phalaris arundinacea	A-E	20		4/1 - 5/31 or 8/16 - 10/15
Colonial Bentgrass	Agrostis tenius	A - E	50		4/1 - 5/31 or 8/16 - 10/15
Creeping Bentgrass	Agrostis palustris	A-E	50		4/1 - 5/31 or 8/16 - 10/1
Poa Trivialis	Poa trivialis	A - E	50		4/1 - 5/31 or 8/16 - 10/15
Creeping Foxtrail	Alopecurus arundinaceus	A - E	50		4/1 - 5/31 or 8/16 - 10/15
Meadow Foxtail	Alopecurus pratensis	A-E	50		4/1 - 5/31 or 8/16 - 10/15
Perennial Ryegrass	Lolium perenne	A - E	240		4/1 - 5/31 or 8/16 - 10/15
RedTop	Agrostis alba	A - E	80		4/1 - 5/31 or 8/16 - 10/15
Meadow Fescue	Festuca elatior	A - E	160		4/1 - 5/31 or 8/16 - 10/15
Cold Season Grass Species	es Scentific Name	Retardance Class	Seed Rate (Ibs/ac)	Height at Maturity (in)	Recommended Planting Dates
Crested Wheatgrass	Agropyron desertorum	A		2 - 3	
Green Needlegrass	Stipa viridula	Α		3 - 4	
Russian WildRye	Psathyrostachys gunceus	Α		3 - 4	
Smooth Bromegrass	Bromus inermis	А		3 - 4	
Tall Fescue	Festuca arundinacea	A		3 - 4	
Tall Wheatgrass	Elytriga pontica	Α		4 - 5	
Western Wheatgrass	Agropyron smithii	A		2 - 3	
Warm Season Gras	Ses			·····································	
Species	Scentific Name	Retardance Class	Seed Rate (Ibs/ac)	Height at Maturity (in)	Recommended Planting Dates
Bermuda Grass	Cynodon dactylon	C		3/4 - 2	
Big Bluestem	Andropogon gerardii	В		4 - 6	
Blue grama	Boutelova gracillis	В		1 - 2	
Buffalo grass	Buchloe dactyloides	D		1/3 - 1	
Green Sprangletop	Leptochloa dubia	А		3 - 4	
Indian grass	Sorghastrum nutans	A		5 - 6	
Kleingrass	Panicum coloratum	A		3 - 4	
Little bluestem	Schizachyrium scoparium	A		3 - 4	
Plains bristlegrass	Setaria macrostachya	В		1-2	
Sand bluestem	Andropogon hallii	A		5 - 6	
Sideoats grama	Bouteloua curtipendula	А		2 - 3	
Switch grass	Panicum Virgatum	A		4 - 5	
Vine mesquitegrass	Panicum Obtusum	В		1 - 2	
Weeping lovegrass	Eragrostis Curvula	A		3-4	

Calculations – Operational Landfill Conditions

Dairyland Power Cooperative Run-On and Run-Off Control System Plan Alma Offsite Disposal Facility, Phase IV Landfill, Alma, Wisconsin Final October 2016 Revised October 2021 744 Heartland Trail Madison, WI 53717-1934 Tel. (608) 831-4444 • Fax (608) 831-3334

SHEET___OF__

PROJECT / PROPOSAL NAME / LOCATION: DPC - PC	0	PROJECT / PROPOSAL NO.		
SUBJECT: OPERATIONME DITCH SIZI	VG	3078.40		
PREPARED BY: BJ-	DATE: 10/00	FINAL 😿		
CHECKED BY:	DATE:	REVISION D		

OPERATIONAL DITCHES

4.

(SEE FIGURES K-4 to K-9, OPERATIONAL RUNOFF CALCULATIONS)

DITCH	LOCATION	100 - YR FLOW	SLOPE	SHAPE
V-NOTCH DITCH A	CELL I ALTIVE	5 CPS	6%	V-NOTEH
DITCH B	CELL I ACTIVE	561 CFS'	2%	10' FLAT
DITCH C	CELL ZA ACTIVE	6 cfs	6.3%	V-NOTCH
DITCH D	CELL 2B ACTIVE	3 CFS	12%	V-NOTCH
DITCH E	CELL 3 ALTIVE	561 583 CB' V	1%	10' FLAT
DITCH F	CELL YA ACTIVE	373 433 CF5 2	10%	10' FLAT
Ditch G	CELL ZA ACTIVE	360 CF54		

NOTES 1. FLOWS FROM PREDEVELOPMENT AREAS NORTH + WEST (See p. 96) @ 12.6 hrs 2. FLOWS FROM PREDEVELOPMENT AREAS NORTH + 28 @ 12.6 Hrzs (see p.66/98)

3 PERMANANT DITCHES SIZED UNDER POST-DEVELOPMENT CALCULATIONS.

FLOW FROM PREDEVELOPMIENT ANA AREA NORTH (See p.95)

SW DITCH

CELL 2A ACTIVE

561CFS

590 10' FLAT

a (
	111100 11101		

FORM 383A

		Grass Channel Sizing Calculations				
Site:		Dairyland Power Cooperative	Date:	10/00		
Proje		3081.40	User:	BJK		
Chan	nel:	Ditch A				

	Input Par	rameters.				
	A. Side sl	lope, Z1 (hor/vert) =			3.000	ft/ft
	B. Side slo	ope, Z2 (hor/vert) =			16.000	ft/ft
	C. Botton	n width, B =			0.000	ft
	D. Desigr	n channel slope, S =			0.060	ft/ft
	E. Channe	el Peak Flow, Q =			5.000	cfs
	F. Enter	- 1 - for Type "C" Veg. Retardence - 2 - for Type "D" Veg. Retardence			2	
I.	Peak Flow	w Calculations.				
	A. Trial f	flow depth, D =			0.533	ft
		(Bisection method until Va=Vb)				
	B. Channe	el flow area, Ac = (.5*Z1*D^2) + (B*D) + (.5*Z2*D^2)			2.703	sq ft
	C. Wetter	d Perimeter, $Pw =$ (D*(Z1^2+1)^.5) + B + (D*(Z2^2+1)^	⁵ .5)		10.239	ft
	D. Hydra	ulic radius, Rh = (Ac/Pw)			0.264	ft
	E. Velocit	ty and hydraulic radius, VR = (Va * Rh)			0.488	sfps
	F. Channe	el flow Manning's coeff, nc = 0			0.081	
	G. Trial v	relocity, Va = (Q/Ac)			1.850	fps
	H. Result	(2, -3) tant velocity, Vb = $(1.49/nc) * (Rh^{.667}) * (S^{.5})$			1.850	fps Vok

RMT, Inc. rass Channel Sizing Calculations

h:\data\common\template\sc-51\grasscha.xls

2

Invoke Solution Macro by typing - 'ctrl' D

Channel Analysis Information:

Name: Channel Analysis Name: Ditch B

Channel Geometry & Hydraulics:

Design By:	Flow/Velocity:	Channel Geometry:
Designed By: FLOW Channel Side Slopes: Left Slope (xH:1V): 3.00 Right Slope (xH:1V): 3.00	Discharge (cfs): 583.00 Flow Duration (hrs): 1.00 Average Velocity (ft/s): 0.00	Bed Slope (ft/ft):0.02000Req. Freeboard (ft):0.00Channel Length (ft):530.00Bottom Width (ft):10.00Channel Depth (ft):4.00
Channel Bend:	Vegetation:	Soil Filled:
Channel Bend: No Bend Radius (ft): 0.00 Outside Bend:	Vegetated: No Vegetation Class:	Soil Filled: Yes
Factor of Safety: 1.00		Functional Longevity: 48

Analysis Results:

	Side	Lining Type	Manning's "n"	Velocity Actual	(ft/s) Max. Allowed	Safety Factor	Shear St Actual	Max. Allowed	Safety Factor	Flow Depth (ft)	Discharge (cfs)	OK?
A Second	Left:	LANDLOK TRM	0.0250	13.4	16.5	1.2	2.5	6.2	2.5	1.54	11 C J	
	Bottom	LANDLOK TRM	0.0250	14.5	16.5	1.1	2.9	6.2	2.1	2.3594	583.0	Yes
	Right:	LANDLOK TRM	0.0250	13.4	16.5	1.2	2.5	6.2	2.5		1.2	
	Left:		0.0000	0.0	0.0	0.0	0.0	0.0	0.0	1.0	11-1	10.00
Analysis #2	Bottom		0.0000	0.0	0.0	0.0	0.0	0.0	0.0	0.0000	0.0	No
	Right:		0.0000	0.0	0.0	0.0	0.0	0.0	0.0	1.001	12 A.	
10.0	Left:		0.0000	0.0	0.0	0.0	0.0	0.0	0.0			-
Analysis #3	Bottom		0.0000	0.0	0.0	0.0	0.0	0.0	0.0	0.0000	0.0	No
	Right:		0.0000	0.0	0.0	0.0	0.0	0.0	0.0			

	Flow Area (sq ft)	Hydraulic Radius (ft)	Composite 'n'	Left Wetted Perimeter(ft)	Right Wetted Perimeter(ft)	Total Wetted Perimeter(ft)	Average Veleocity (ft/s)	Average Discharge (cfs)	Froude
Analysis #1	40.2945	1.6168	0.0200	7.4611	7.4611	24.9222	14.4685	583.0	1.58
Analysis #2	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0	.000
Analysis #3	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0	.000

RMT, Inc. Grass Channel Sizing Calculations

Site: Project	t #:	Dairyland Power Cooperative 3081.40	Date: User:	10/00 BJK			
Chann		Ditch C	coor.	Djit			
I.	Input Para	meters.					
	A. Side slo	pe, Z1 (hor/vert) =			3.000	ft/ft	
	B. Side sloj	pe, Z2 (hor/vert) =		10	5.000	ft/ft	
	C. Bottom	width, B =		10	0.000	ft	
	D. Design	channel slope, S =		L d	0.063	ft/ft	
	E. Channel	l Peak Flow, Q =		Εġ	5.000	cfs	
	F. Enter	- 1 - for Type "C" Veg. Retardence - 2 - for Type "D" Veg. Retardence			2		
II.	Peak Flow						
	A. Trial flo	ow depth, D =).550	ft	
	B. Channel	(Bisection method until Va=Vb) flow area, Ac = (.5*Z1*D^2) + (B*D) + (.5*Z2*D^2)			2.870	sq ft	
	C. Wetted	Perimeter, $Pw = (D^*(Z1^2+1)^{5}) + B + (D^*(Z2^2+1)^{5})$.5)	10).549	ft	
	D. Hydrau	lic radius, Rh = (Ac/Pw)		20).272	ft	
	E. Velocity	and hydraulic radius, VR = (Va * Rh)		l.).569	sfps	
	F. Channel	flow Manning's coeff, nc = 0		(0.075		
	G. Trial vel	locity, Va = (Q/Ac)		3	2.091	fps	
	H. Resulta	nt velocity, Vb = (1.49/nc) * (Rh^.667) * (S^.5)			2.091	fps	rok
		1					

Invoke Solution Macro by typing - 'ctrl' D

h:\data\common\template\sc-51\grasscha.xls

RMT, Inc.-Grass Channel Sizing Calculations

Site:		Dairyland Power Cooperative	Date:	10/00		
Projec	ct #:	3081.40	User:	BJK		
Chan	nel:	Ditch D				

I.	Input Para	meters.				
	A. Side slo	pe, Z1 (hor/vert) =			3.000	ft/ft
	B. Side sloj	be, Z2 (hor/vert) =			3.000	ft/ft
	C. Bottom	width, B =			0.000	ft
	D. Design	channel slope, S =			0.120	ft/ft
	E. Channel	Peak Flow, Q =			3.000	cfs
	F. Enter	- 1 - for Type "C" Veg. Retardence - 2 - for Type "D" Veg. Retardence			2	
11.	Peak Flow	Calculations.				
	A. Trial flo	ow depth, D = (Bisection method until Va=Vb)			0.547	ft
	B. Channel	flow area, Ac = $(.5*Z1*D^2) + (B*D) + (.5*Z2*D^2)$			0.897	sq ft
	C. Wetted	Perimeter, $Pw = (D^*(Z1^2+1)^{5}) + B + (D^*(Z2^2+1)^{5})$	^.5)		3.459	ft
	D. Hydrau	lic radius, Rh = (Ac/Pw)			0.259	ft
	E. Velocity	and hydraulic radius, VR = (Va * Rh)			0.867	sfps
	F. Channel	flow Manning's coeff, nc = 0			0.063	

(Q/Ac) H. Resultant velocity, Vb = 3.344 fps √ 0½ (1.49/nc) * (Rh^.667) * (S^.5)

3.344 fps

Invoke Solution Macro by typing - 'ctrl' D

G. Trial velocity, Va =

h:\data\common\template\sc-51\grasscha.xls

Page 2 of 4

Channel Analysis Information:

A State of the second second

Name:

Channel Analysis Name: Ditch E

Channel Geometry & Hydraulics:

Design By:	Flow/Velocity:	Channel Geometry:			
Designed By: FLOW Channel Side Slopes:	Discharge (cfs): 583.00 Flow Duration (hrs): 1.00 Average Velocity (ft/s): 0.00	Bed Slope (ft/ft): 0.01000 Req. Freeboard (ft): 0.00 Channel Length (ft): 1000.0			
Left Slope (xH:1V): 3.00 Right Slope (xH:1V): 10.00		Bottom Width (ft): 10.00 Channel Depth (ft): 3.00			
Channel Bend:	Vegetation:	Soll Filled:			
Channel Bend: No Bend Radius (ft): 0.00 Outside Bend:	Vegetated: No Vegetation Class:	Soil Filled: Yes			
Factor of Safety: 1.00		Functional Longevity: 60			

Analysis Results:

公书 经公共运行			1 20 20 20 20	Velocity		10-1-10 M	Shear St	tress (lbs/s		Flow	· N. Stimmer	TA STAT
	Side	Lining Type	Manning's "n"	Actual	Max. Allowed	Safety Factor	Actual	Max. Allowed	Safety Factor	Depth (ft)	Discharge (cfs)	0К?
	Left:	LANDLOK TRM	0.0250	8.9	16.5	1.9	1.3	6.2	4.9			
Analysis #1	Bottom:	LANDLOK TRM	0.0250	9.6	16.5	1.7	1.5	6.2	4.2	2.3865	583.0	Yes
	Right:	LANDLOK TRM	0.0250	9.3	16.5	1.8	1.4	6.2	4.5			1
Carros	Left:		0.0000	0.0	0.0	0.0	0.0	0.0	0.0	1.00	-	
Analysis #2	Bottom		0.0000	0.0	0.0	0.0	0.0	0.0	0.0	0.0000	0.0	No
	Right:		0.0000	0.0	0.0	0.0	0.0	0.0	0.0			Ĕ1
	Left:	1	0.0000	0.0	0.0	0.0	0.0	0.0	0.0			1
Analysis #3	Bottom		0.0000	0.0	0.0	0.0	0.0	0.0	0.0	0.0000	0.0	No
	Right:		0.0000	0.0	0.0	0.0	0.0	0.0	0.0			

	Flow Area (sq ft)	Hydraulic Radius (ft)	Composite 'n'	Left Wetted Perimeter(ft)	Right Wetted Perimeter(ft)	Total Wetted Perimeter(ft)	Average Veleocity (ft/s)	Average Discharge (cfs)	Froude
Analysis #1	60.8850	1.4660	0.0200	7.5468	23.9840	41.5308	9.5754	583.0	1.06
Analysis #2	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0	.000
Analysis #3	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0	.000

Channel Analysis Information:

Name:

Channel Analysis Name: Ditch F

Channel Geometry & Hydraulics:

Design By:	Flow/Velocity:	Channel Geometry:		
Designed By: FLOW Channel Side Slopes: Left Slope (xH:1V): 3.00 Right Slope (xH:1V): 5.00	Discharge (cfs): 433.00 Flow Duration (hrs): 1.00 Average Velocity (ft/s): 0.00	Bed Slope (ft/ft):0.01000Req. Freeboard (ft):0.00Channel Length (ft):750.00Bottom Width (ft):10.00Channel Depth (ft):3.00		
Channel Bend:	Vegetation:	Soil Filled:		
Channel Bend: No Bend Radius (ft): 0.00 Outside Bend:	Vegetated: No Vegetation Class:	Soil Filled: Yes		
Factor of Safety: 1.00		Functional Longevity: 0		

Analysis Results:

	Side	Lining Type	Manning's "n"	Velocity Actual	(ft/s) Max. Allowed	Safety Factor	Shear St Actual	tress (lbs/s Max. Allowed	Safety Factor	Flow Depth (ft)	Discharge (cfs)	OK?
1.2	Left:	LANDLOK TRM	0.0250	9.1	16.5	1.8	1.2	6.2	5.1	20.0		
Analysis #1	Bottom	LANDLOK TRM	0.0250	9.9	16.5	1.7	1.4	6.2	4.4	2.2978	433.0	Yes
	Right:	LANDLOK TRM	0.0250	9.5	16.5	1.7	1.3	6.2	4.7	1.5.5		
	Left:		0.0000	0.0	0.0	0.0	0.0	0.0	0.0	1.5	1.2.2.1	100
Analysis #2	Bottom		0.0000	0.0	0.0	0.0	0.0	0.0	0.0	0.0000	0.0	No
1.	Right:		0.0000	0.0	0.0	0.0	0.0	0.0	0.0	1.1.2	122	
The Tail	Left:		0.0000	0.0	0.0	0.0	0.0	0.0	0.0	1		
Analysis #3	Bottom		0.0000	0.0	0.0	0.0	0.0	0.0	0.0	0.0000	0.0	No
	Right:		0.0000	0.0	0.0	0.0	0.0	0.0	0.0	1000	1.1.1	

	Flow Area (sq ft)	Hydraulic Radius (ft)	Composite 'n'	Left Wetted Perimeter(ft)	Right Wetted Perimeter(ft)	Total Wetted Perimeter(ft)	Average Veleocity (ft/s)	Average Discharge (cfs)	Froude
Analysis #1	44.0967	1.5215	0.0200	7.2662	11.7164	28.9826	9.8193	433.0	1.10
Analysis #2	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0	.000
Analysis #3	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0	.000

EC-DESIGN(R) 2000 Channel Analysis Report

Project Information								
)roject Name: DP Description: Cel	Last Update: 8/25/2003 10:58:10 A Units: English Nearest City:							
Notes: Calculated For Brockwater For Protect 570 510	om culvert 1 will							
Channel Design								
Channel Name: SW Ditcl	ı - Operational 100 yr		Units	English	i	Desi	gn life:	1,200 month
Design Criteria	bil	Channel	Geometr	y	Flo	w/Velocity		
Flow Rate (Q)	Yes B No	B Req. Freeboard (ft) 0.000				Discharge (cf/s)561.000Flow Duration (hrs)1.000Avg. Velocity (ft/s)5.490		
Channel Side Slopes Veft (H:1 V) 2.000 Right (H:1 V) 2.000	No 0.000	1.	Width (ft Depth (f		Required Factor 1.00 of Safety			
Results								
		V	elocity (ft/s) Shear Stres			tress (lbs		
Lining Materials		Computed	Max Allowed	Safety Factor	Computed	Max Allowed	Safety Factor	Depth (ft) 5.070
Left PYRAMAT		5.100	23.340	4.580	2.720	9.400	3.460	
Bottom PYRAMAT		5.510	23.340	4.240	3.170	9.400	2.970	
D'-LA DYDANCAT		5.100	23.340	4.580	2.720	9.400	3.460	
Right PYRAMAT		5.100	1. Although a start		-			
		5.100						
	5.070	3,100		Wetted 1	Perimeter (1	ît)	11.350	
Calculation Results:	5.070 102.230	5.100	Left Bott	om Wett	ed Perimete	er (ft)	9.990	
Calculation Results: Flow Depth (ft)		5.100	Left Bott Rigi	om Wett nt Wetted		er (ft) (ft)		1
Calculation Results: Flow Depth (ft)	102.230	5.100	Left Bott Rigl Tot:	om Wett nt Wetted	ed Perimete Perimeter Perimeter	er (ft) (ft)	9.990 11.350	

EC-DESIGN(R) 2000 Channel Analysis Report

George	Information								
roject	Name: DPC			-	Last U	pdate:	8/25/2003	10:53:12 A	
Descrip	tion: Cell 2A	operational Calcs			Units:		English		
Madau					Neares	st City:			
Notes:	FUR 5% SLUPE SECTION 25-Y	e RSTURM							
Channe	l Design								
Channel	Name: SW Ditch - (Operational 25 yr		Units	: Englisl	1	Desi	ign life:	48 month
Design	Criteria	Vegetation and So	li	Channel	Geometr	у	Flo	ow/Velocity	
Flow Ra	ite (Q)	Vegetated Vegetation Class Soil Filled	Yes B No	1.112	oe (ft/ft) eeboard (Length (00 Flo	scharge (cf ow Duration /g. Velocity	n (hrs) 1.000
Channe	l Side Slopes	Channel Bend	No		Width (ft				
eft (H: kight (F		Bend Radius (ft) Outside Bend	0.000		Depth (i		Req	uired Fact afety	or 1.00
Results									
			V	elocity (ft	(s)	Shear S	tress (lbs	/sqft)	Avg. Flow
Lining N	Materials		Computed	Max Allowed	Safety Factor	Computed	Max Allowed	Safety Factor	Depth (ft) 2.610
Left	PYRAMAT		8.030	23.340	2.910	6.450	9.400	1.460	
Bottom	PYRAMAT		9.020	23.340	2.590	8.140	9.400	1.150	
and the second second	PYRAMAT		8.030	23.340	2.910	6.450	9.400	1.460	
Right									
	tion Results:								
Calcula	tion Results: ow Depth (ft)	2.610		Left	Wetted	Perimeter (1	ft)	5.830	22
Calcula Fl		2.610 39.690		Bott	om Wett	ed Perimete	er (ft)	10.000	
Calcula Fl	ow Depth (ft)			Bott Rigi	om Wett ht Wetted	ed Perimete Perimeter	er (ft) (ft)	10.000 5.830	
Calcula Fi Fi	ow Depth (ft) ow Area (ft)	39.690		Bott Rigl Tot:	om Wett ht Wetted hl Wetted	ed Perimeter Perimeter Perimeter	er (ft) (ft)	10.000 5.830 21.660	
Calcula Fi Fi Hy	ow Depth (ft)			Bott Rigl Tot: Avg	om Wett ht Wetted	ed Perimeter Perimeter Perimeter (ft/s)	er (ft) (ft) (ft)	10.000 5.830	

EC-DESIGN(R) 2000 Channel Analysis Report

	Information								
)roject N Descripti Notes:		A operational Calcs			Last U Units: Neares		8/25/2003 English	11:00:48 A	
Channel	Design								
Channel N	ame: Phase III Se	outh Slope Ditch		Units	English	1	Desi	gn life:	24 month
Design Criteria Vegetation and S Flow Rate (Q) Vegetated Vegetation Class Soil Filled		oil	Channel	Geometr	y	Flo	w/Velocity		
		No Yes		oe (ft/ft) eeboard (Length (00 Flo	Discharge (cf/s)4.000Flow Duration (hrs)1.000Avg. Velocity (ft/s)6.280		
The second second	Side Slopes	Channel Bend	No 0.000	Bottom	Width (ft		Reg	uired Fact	1.00
Left (H:1 Right (H		Bend Radius (ft) Outside Bend	0.000	Channel	Depth (1	ft) 1.50	00 of S	afety	or 1.00
) Right (H			0.000	Channel	Depth (1	it) 1.50	00 of S		or 1.00
) Right (H				elocity (ft/	/s)		tress (lbs	afety /sqft)	Avg. Flow
) Right (H	:1 V) 3.000			elocity (ft/ Max	/s) Safety		tress (lbs	afety /sqft) Safety	
Right (H	Interials	Outside Bend		elocity (ft/ Max	/s) Safety	Shear S	tress (lbs	afety /sqft) Safety	Avg. Flow Depth (ft)
Right (H Results Lining M Left Bottom	Interials	Outside Bend	Computed 6.080 6.730	elocity (ft/ Max Allowed 16.490 16.490	Safety Factor 2.710 2.450	Shear S Computed 1.050 1.280	tress (lbs Max Allowed 6.250 6.250	/sqft) Safety Factor 5.950 4.880	Avg. Flow Depth (ft)
Right (H Results Lining M Left	Interials	Outside Bend	V Computed 6.080	elocity (ft, Max Allowed 16.490	's) Safety Factor 2.710	Shear S Computed 1.050	tress (lbs Max Allowed 6.250	/sqft) Safety Factor 5.950	Avg. Flow Depth (ft)
Results Lining M Left Bottom Right	Interials	Outside Bend	Computed 6.080 6.730	elocity (ft/ Max Allowed 16.490 16.490	Safety Factor 2.710 2.450	Shear S Computed 1.050 1.280	tress (lbs Max Allowed 6.250 6.250	/sqft) Safety Factor 5.950 4.880	Avg. Flow Depth (ft)
Right (H Results Lining M Left Bottom Right Calculat	1 V) 3.000 Iaterials LANDLOK TRM 4 LANDLOK TRM 4 LANDLOK TRM 4	Outside Bend	Computed 6.080 6.730	elocity (ft, Max Allowed 16.490 16.490 16.490	(s) Safety Factor 2.710 2.450 2.600	Shear S Computed 1.050 1.280	tress (lbs Max Allowed 6.250 6.250 6.250	/sqft) Safety Factor 5.950 4.880	Avg. Flow Depth (ft)
Results Lining M Left Bottom Right Calculat Flo	Interials LANDLOK TRM 4 LANDLOK TRM 4 LANDLOK TRM 4 LANDLOK TRM 4	Outside Bend	Computed 6.080 6.730	elocity (ft, Max Allowed 16.490 16.490 16.490 Left Bott	(s) Safety Factor 2.710 2.450 2.600 Wetted I tom Wett	Shear S Computed 1.050 1.280 1.140 Perimeter (ed Perimeter	tress (lbs Max Allowed 6.250 6.250 6.250 ft) er (ft)	afety /sqft) Safety Factor 5.950 4.880 5.480 0.770 1.000	Avg. Flow Depth (ft)
Results Lining M Left Bottom Right Calculat Flo	Interials LANDLOK TRM 4 LANDLOK TRM 4 LANDLOK TRM 4 LANDLOK TRM 4 LANDLOK TRM 4 LANDLOK TRM 4	Outside Bend 50 50 50 0.340	Computed 6.080 6.730	elocity (ft, Max Allowed 16.490 16.490 16.490 Left Bott Rigi	(s) Safety Factor 2.710 2.450 2.600 Wetted I tom Wetted	Shear S Computed 1.050 1.280 1.140 Perimeter (tress (lbs Max Allowed 6.250 6.250 6.250 ft) er (ft) (ft)	afety /sqft) Safety Factor 5.950 4.880 5.480 0.770	Avg. Flow Depth (ft)
Right (H Results Lining M Left Bottom Right Calculat Flo	Interials LANDLOK TRM 4 LANDLOK TRM 4 LANDLOK TRM 4 LANDLOK TRM 4 LANDLOK TRM 4 LANDLOK TRM 4	Outside Bend 50 50 50 0.340 0.640	Computed 6.080 6.730	elocity (ft/ Max Allowed 16.490 16.490 16.490 16.490 Left Bott Rigi Tot:	(s) Safety Factor 2.710 2.450 2.600 Wetted I tom Wetted	Shear S Computed 1.050 1.280 1.140 Perimeter (Perimeter Perimeter	tress (lbs Max Allowed 6.250 6.250 6.250 ft) er (ft) (ft)	afety /sqft) Safety Factor 5.950 4.880 5.480 0.770 1.000 1.080	Avg. Flow Depth (ft)

EC-DESIGN(R) 2000 Cha	nnel Analysis Report
-----------------------	----------------------

	Information								
)roject) Descript Notes:		2A operational Calcs			Last U Units: Neares	2010/07/2010	8/25/2003 English	11:00:48 A	
Channel	l Design								100
Channel N	Name: Ditch G			Units	: English	1	Desi	ign life:	48 month
Design (Criteria	Vegetation and So	oil	Channel	Geometr	y.	Flo	w/Velocity	
Flow Rat	te (Q)	Vegetated Vegetation Class Soil Filled	No No	1.0	oe (ft/ft) eeboard (Length (00 Flo	scharge (cf ow Duration /g. Velocity	n (hrs) 1.000
	Side Slopes	Channel Bend	No	Bottom	Width (ft) 10.0			
Left (H: Right (H		Bend Radius (ft) Outside Bend	0.000	Channel	l Depth (1	ît) 4.00		uired Fact afety	or 1.00
) Right (H			0.000	Channel	l Depth (1	ît) 4.00			or 1.00
) Right (H				Channel				afety /sqft)	Avg. Flow
, Right (H	I:1 V) 3.000			elocity (ft/ Max	/s) Safety	Shear S	of S tress (lbs Max	afety /sqft) Safety	Avg. Flow Depth (ft)
Right (H	I:1 V) 3.000	Outside Bend		elocity (ft/ Max	/s) Safety		of S tress (lbs Max	afety /sqft) Safety	Avg. Flow Depth (ft)
Results	I:1 V) 3.000	Outside Bend	Computed	elocity (ft/ Max Allowed	/s) Safety Factor	Shear S	of S tress (lbs Max Allowed	afety /sqft) Safety Factor	Avg. Flow Depth (ft)
Results Lining N Left	I:1 V) 3.000 Materials LANDLOK TRM	Outside Bend 450 450	V Computed 10.170	elocity (ft/ Max Allowed 16.490	's) Safety Factor 1.620	Shear S Computed 1.610	of S tress (lbs Max Allowed 6.250	/sqft) Safety Factor 3.880	Avg. Flow
Results Lining N Left Bottom Right	I:1 V) 3.000 Materials LANDLOK TRM LANDLOK TRM	Outside Bend 450 450	Computed 10.170 11.090	elocity (ft/ Max Allowed 16.490 16.490	Safety Factor 1.620 1.490	Shear S Computed 1.610 1.910	of S tress (lbs Max Allowed 6.250 6.250	/sqft) Safety Factor 3.880 3.270	Avg. Flow Depth (ft)
Results Lining N Left Bottom Right Calculat	I:1 V) 3.000 Materials LANDLOK TRM LANDLOK TRM LANDLOK TRM	Outside Bend 450 450	Computed 10.170 11.090	elocity (ft/ Max Allowed 16.490 16.490 16.490	/s) Safety Factor 1.620 1.490 1.620	Shear S Computed 1.610 1.910	of S tress (lbs Max Allowed 6.250 6.250 6.250	/sqft) Safety Factor 3.880 3.270	Avg. Flow Depth (ft)
Results Lining N Left Bottom Right Calculat	Aaterials LANDLOK TRM LANDLOK TRM LANDLOK TRM	Outside Bend 450 450 450	Computed 10.170 11.090	elocity (ft/ Max Allowed 16.490 16.490 16.490	(s) Safety Factor 1.620 1.490 1.620	Shear S Computed 1.610 1.910 1.610	of S tress (lbs Max Allowed 6.250 6.250 6.250	/sqft) Safety Factor 3.880 3.270 3.880	Avg. Flow Depth (ft)
Results Lining N Left Bottom Right Calculat Flo	Aaterials LANDLOK TRM LANDLOK TRM LANDLOK TRM LANDLOK TRM LANDLOK TRM	Outside Bend 450 450 450 2.040	Computed 10.170 11.090	elocity (ft/ Max Allowed 16.490 16.490 16.490 Left Bott Rigl	/s) Safety Factor 1.620 1.490 1.620 Wetted I tom Wetted	Shear S Computed 1.610 1.910 1.610 Perimeter (ed Perimeter	of S tress (lbs Max Allowed 6.250 6.250 6.250 ft) er (ft) (ft)	/sqft) Safety Factor 3.880 3.270 3.880 6.460 9.990 6.460	Avg. Flow Depth (ft)
Results Lining N Left Bottom Right Calculat Flo	Aaterials LANDLOK TRM LANDLOK TRM LANDLOK TRM LANDLOK TRM LANDLOK TRM	Outside Bend 450 450 450 2.040	Computed 10.170 11.090	elocity (ft/ Max Allowed 16.490 16.490 16.490 Left Bott Rigl	/s) Safety Factor 1.620 1.490 1.620 Wetted I tom Wetted	Shear S Computed 1.610 1.910 1.610 Perimeter (ted Perimeter	of S tress (lbs Max Allowed 6.250 6.250 6.250 ft) er (ft) (ft)	afety /sqft) Safety Factor 3.880 3.270 3.880 6.460 9.990	Avg. Flow Depth (ft)
Results Lining M Left Bottom Right Calculat Flo	Aaterials LANDLOK TRM LANDLOK TRM LANDLOK TRM LANDLOK TRM LANDLOK TRM	Outside Bend 450 450 450 2.040 32.920	Computed 10.170 11.090	elocity (ft/ Max Allowed 16.490 16.490 16.490 16.490 Left Bott Rigl Tota	/s) Safety Factor 1.620 1.490 1.620 Wetted I tom Wetted	Shear S Computed 1.610 1.910 1.610 Perimeter (Perimeter Perimeter	o0 of S tress (lbs Max Allowed 6.250 6.250 6.250 ft) er (ft) (ft) (ft)	/sqft) Safety Factor 3.880 3.270 3.880 6.460 9.990 6.460	Avg. Flow Depth (ft)

Reference Information

Dairyland Power Cooperative Run-On and Run-Off Control System Plan Alma Offsite Disposal Facility, Phase IV Landfill, Alma, Wisconsin roughness) varies with VR. The term VR is the product of velocity and the hydraulic radius. This relationship will be referred to as the "n-VR relationship", which is the recommended basis for vegetated channel design.

The five general retardance curves, designated as A, B, C, D, and E in Exhibit 7-1, have been developed for various cover conditions. The vegetal conditions under which the various retardance values apply are shown in Exhibit 7-2. These cover classifications are based on tests in experimental channels when the covers were green and generally uniform.

Most of the vegetation used in waterways does not exceed 18 inches in height and may be much shorter at times during the year. Therefore, it is recommended that when designing the channel for safe velocity, a retardance not greater than "D" be used. After designing the channel for safe velocity, it must be checked for capacity to accommodate the peak flow under conditions where vegetation gives the highest retardance. The retardance used in this instance is the curve corresponding to the expected vegetal cover and, in most cases, it will be retardance "C", though curve "B"

All pertinent design data and computations should be recorded.

DESIGN DATA

The following information is required for designing a waterway:

- Watershed area in acres, together with the soil characteristics, cover and topography. This information is used to estimate runoff by the procedures set forth in Chapter 2 of this manual.
- Grade of the proposed waterway in percent slope (this is the fall in feet per 100 feet of length).
- 3. Vegetal cover adapted to site conditions.
- 4. Erodibility of the soil in the waterway.
- 5. Expected height at which vegetative cover will be maintained.
- 6. The permissible velocity for the conditions encountered.
- Allowance for space that will be occupied by the vegetative lining.
- Allowance for freeboard, if required by State Standards and Specifications.

NON-EROSIVE VELOCITY OF FLOW

In designing grassed waterways, care must be taken to insure that the design velocity is well within the limits of permissible velocities given in Exhibit 7-3. These values apply to average, uniform stands of each type of cover.

Source: U.S. Department of Agriculture, Soil Conservation Service. <u>Engineering Field Manual</u>. November 1986.

	Slope	Permissible	velocity 1/
Cover	range 2/ (percent)	Erosion re- sistant soils (ft.per sec.)	Easily eroded soils (ft.per sec.)
Bermudagrass .	0-5 5-10 over 10	8 7 6	6 5 4
Bahia Buffalograss Kentucky bluegrass Smooth brome Blue grama Tall fescue	0-5 5-10 over 10	7 . 6 . 5	5 4 3
Grass mixtures Reed canarygrass	<u>2/</u> 0-5 5-10	L <u>5</u> 4	4
Lespedeza sericea Weeping lovegrass Yellow bluestem Redtop Alfalfa Red fescue	<u>3</u> / 0-5	3.5	2.5
Common lespedeza <u>4</u> / Sudangrass <u>4</u> /	<u>5</u> / ₀₋₅	3.5	2.5

- 1/ Use velocities exceeding 5 feet per second only where good covers and proper maintenance can be obtained.
- <u>2</u>/ Do not use on slopes steeper than 10 percent except for vegetated side slopes in combination with a stone, concrete, or highly resistant vegetative center section.
- 3/ Do not use on slopes steeper than 5 percent except for vegetated side slopes in combination with a stone, concrete, or highly resistant vegetative center section.
- 4/ Annuals--use on mild slopes or as temporary protection until permanent covers are established.
- 5/ Use on slopes steeper than 5 percent is not recommended.

Exhibit 7-3. Permissible velocities for channels lined with vegetation

7-14

Culvert/Downslope Flume Design Calculations

Dairyland Power Cooperative Run-On and Run-Off Control System Plan Alma Offsite Disposal Facility, Phase IV Landfill, Alma, Wisconsin Final October 2016 Revised October 2021

Purpose/Methodology/Assumptions/Results/References

Dairyland Power Cooperative Run-On and Run-Off Control System Plan Alma Offsite Disposal Facility, Phase IV Landfill, Alma, Wisconsin

PROJECT/PROPOSAL NAME	PREPAR	ED	CHECKE	0	PROJECT/PROPOSAL NO.
Dairyland Power Cooperative	By: BJK	Date: 9/00	By: RAA	Date: 10/00	3081.40

CULVERT DESIGN CALCULATIONS

Purpose

To determine the appropriate culvert and downslope flume sizes for the anticipated peak flows resulting from the 100-year, 24-hour storm at the proposed Dairyland Power Cooperative Landfill.

Methodologies

Culvert design involves the process of selecting an appropriate culvert size capable of allowing the estimated peak storm water runoff to pass through it without creating surface water breaching (i.e., berm overflow) or excessive backwater levels. Culvert sizing was performed using design charts developed by the U.S. Department of Transportation Federal Highway Administration.

Downslope flumes will convey flow from the final cover diversion berms to the sedimentation basin. Downslope flumes were also sized using design charts developed by the U.S. Department of Transportation Federal Highway Administration. The energy dissipater for the downslope flume was sized using design guidance from the US Department of the Interior, Bureau of Reclamation.

Assumptions

The following assumptions were used in the culvert and downslope flume sizing analysis:

- Culvert and downslope flume layout and allowable headwater levels are shown on the accompanying plan set.
- Tailwater depths were assumed based on anticipated flows within the ditching. For culverts discharging into sedimentation basins, the tailwater elevation in the basin from the routing calculations.
- 3. Culverts are assumed to be corrugated metal culvert pipes or concrete box culverts.
- 4. Culverts were designed to maintain a minimum 1 to 2 feet of freeboard, depending on the location.

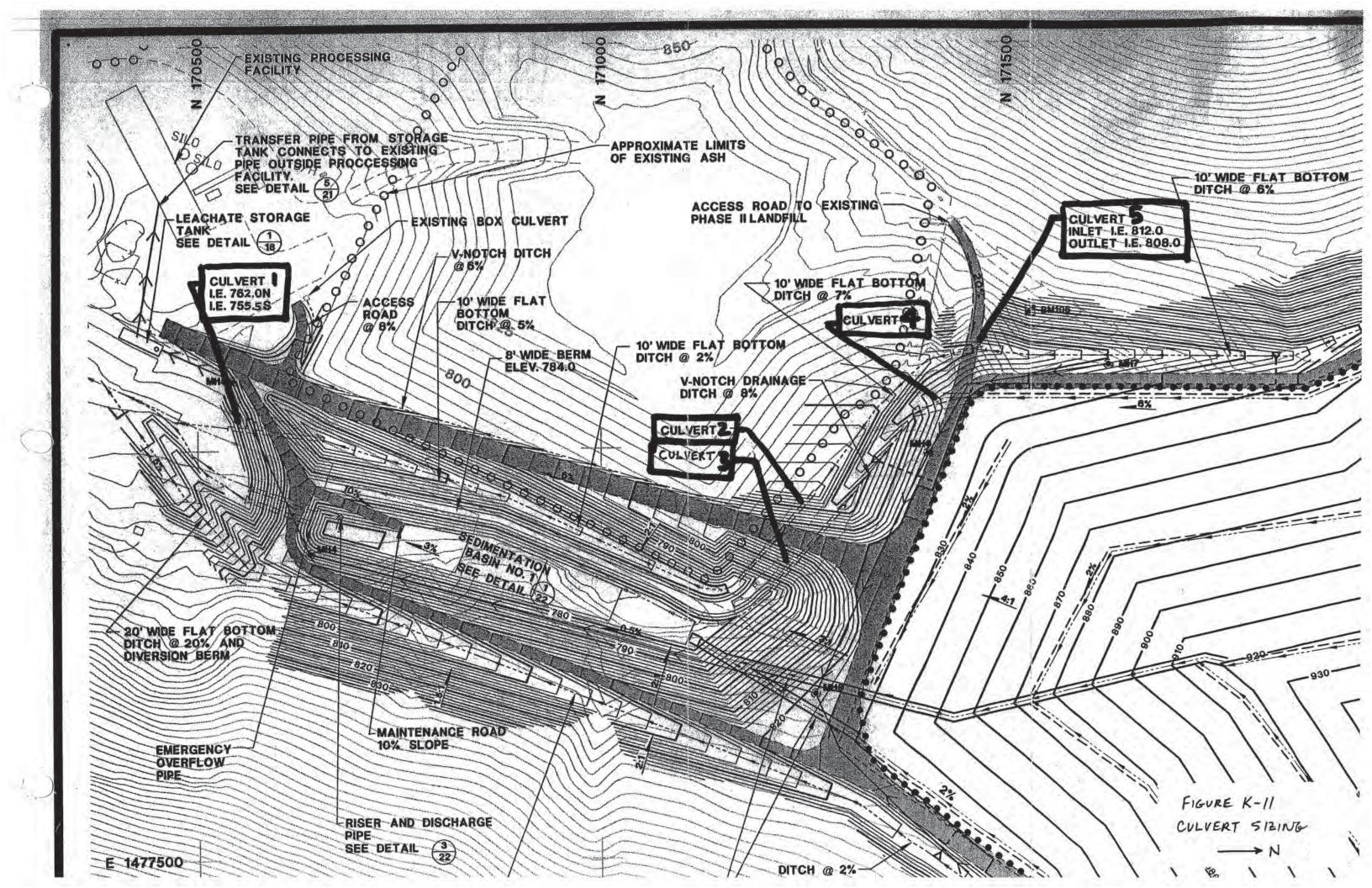
COMPUTATION SHEET

744 Heartland Trail (53717-8923) P	. O. Box 8923 (5370	08-8923)	Madison, WI	(608) 831-444	4 FAX	2 X: (608) 831-3334	VOICE: (608) 831-1989	
PROJECT/PROPOSAL NAME	PREPAR	PREPARED		ECKED		PROJECT/PR	OPOSAL NO.	
Dairyland Power Cooperativ	re BJK	Date 9/0					3081.40	

Results

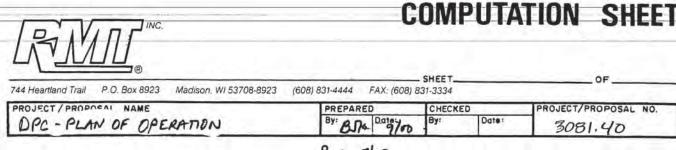
The table below summarizes the results of the culvert pipe sizing analyses:

CULVERT	SLOPE (%)	LENGTH (ft)	100-YR. FLOW (cfs)	SIZE
Culvert #1	7.0	96	323	4'x 7' Box
Culvert #2	7.7	126	323	4'x 7' Box
Culvert #3	11.2	125	15	30" CMP
Culvert #4	9.3	75	15	30" CMP
Culvert #5	5	85	323	4' x 7' Box

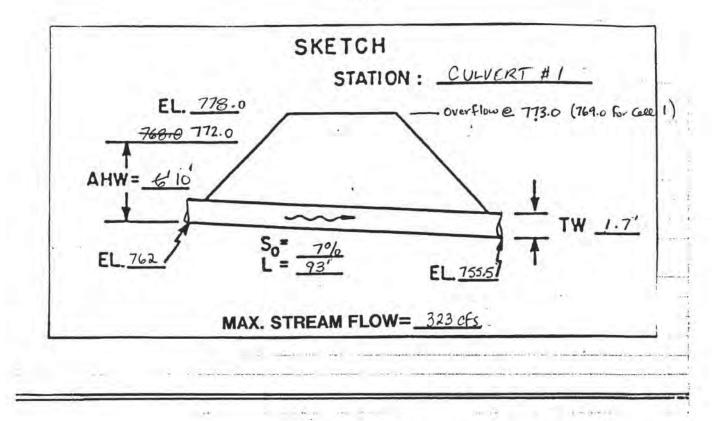

Note:

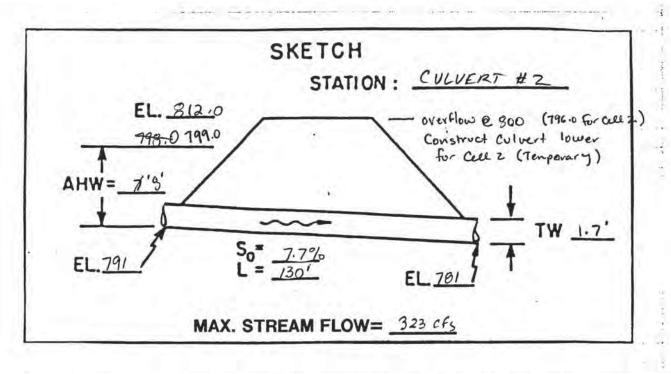
Culvert lengths to be adjusted based on available culvert section lengths.

Downslope pipe and energy dissipater sizing are shown on the engineering details included in the Plan Set.

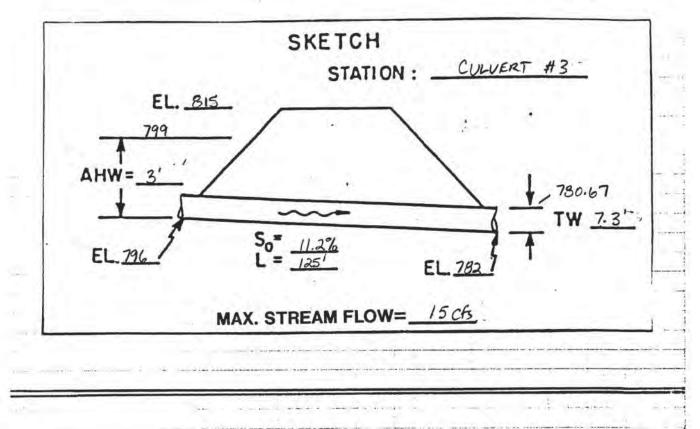

References

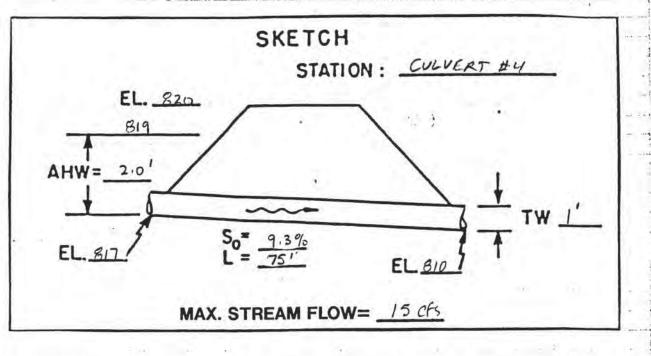
- U.S. Department of Transportation. Hydraulics charts for the selection of highway culverts. Hydraulic engineering circular no. 5. December 1965.
- U.S. Department of the Interior, Bureau of Reclamation. Hydraulic Design of Stilling Basins and Energy Dissipaters. Engineering Nomograph No. 25. May 1984.

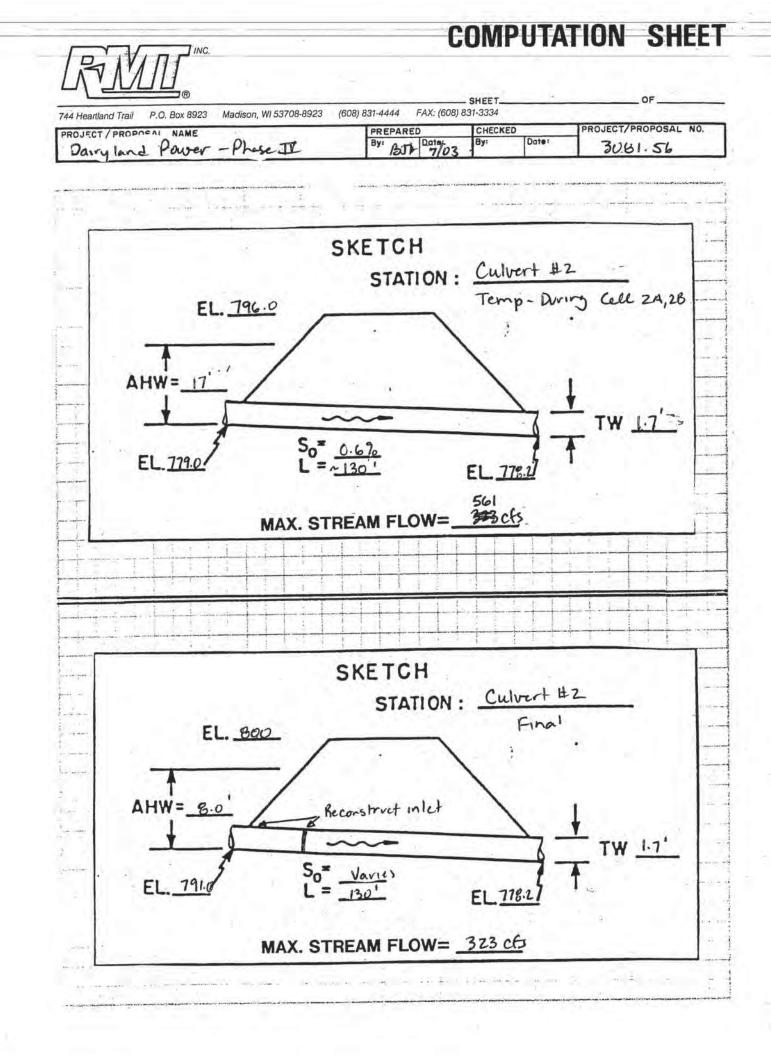




Calculations – Post-closure Landfill Conditions



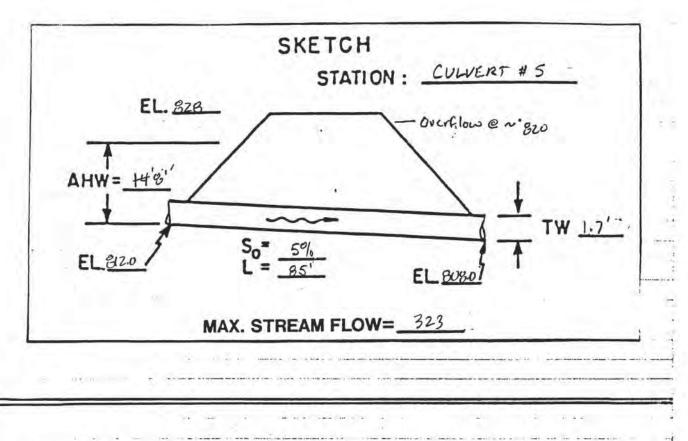


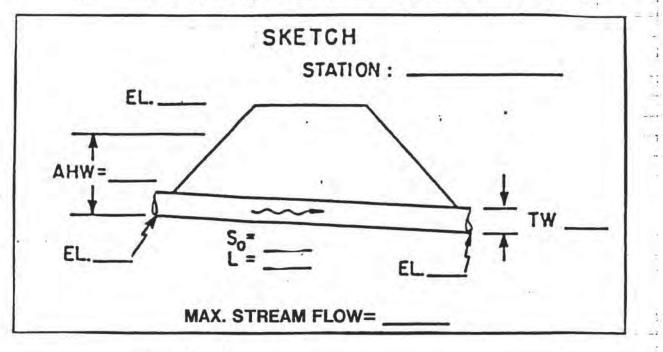


BIN				C	UMI	PUIA	IIUN SHEE
744 Heartland Trail	P.O. Box 8923	Madison, WI 53708-8923 (6	08) 831-4444	FAX: (608) 8	SHEET	-	OF
PROJECT / PROP		OPERATION	By:		CHECKE By:	Date:	PROJECT/PROPOSAL NO.

Culvert Calculator Report Culvert 2 - Operational

Solve For: Headwater Elevation


Culvert Summary					
Allowable HW Elevation	796.00 ft	Ê I I I	Headwater Depth/ Height	3.86	
Computed Headwater Elevation	794.45 ft		Discharge	561.00	cfs
Inlet Control HW Elev	792.30 ft		Tailwater Elevation	779.90	ft
Outlet Control HW Elev	794.45 ft	<u> </u>	Control Type	Outlet Control	£
Grades					
Upstream Invert	779.00 ft		Downstream Invert	778.20	ft
Length	130.00 ft		Constructed Slope	0.006154	ft/ft
Hydraulic Profile					-
Profile	Pressure		Depth, Downstream	4.00	ft
Slope Type	N/A		Normal Depth	N/A	ft
Flow Regime	N/A		Critical Depth	4.00	ft
Velocity Downstream	20.04 ft/	/s	Critical Slope	0.022277	ft/ft
Section					
Section Shape	Box		Mannings Coefficient	0.013	
Section Material	Concrete		Span	7.00	ft
Section Size	7 x 4 ft		Rise	4.00	ft
Number Sections	1	-			
Outlet Control Properties					-
Outlet Control HW Elev	794.45 ft	t -	Upstream Velocity Head	6.24	ft
Ke	0.50	<u>.</u>	Entrance Loss	3.12	ft
Inlet Control Properties	- 2.3				
Inlet Control HW Elev	792.30 ft	1	Flow Control	Submerged	
Inlet Type 18 to 33.7 ° wingwall fl	are, d=0.0830		Area Full	28.0	ft²
к	0.48600		HDS 5 Chart	9	
M	0.66700		HDS 5 Scale	2	
С	0.02490		Equation Form	2	
Y	0.83000				


Culvert Calculator Report Culvert 2 - Final

Solve For: Headwater Elevation

Culvert Summary				
Allowable HW Elevation	799.00 ft	Headwater Depth/ Height	1.78	1.5
Computed Headwater Elevation	798.10 ft	Discharge	323.00	cfs
Inlet Control HW Elev	797.44 ft	Tailwater Elevation	779.90	ft
Outlet Control HW Elev	798.10 ft	Control Type	Entrance Control	1
Grades			_	
Upstream Invert	791.00 ft	Downstream Invert	778.20	ft
Length	130.00 ft	Constructed Slope	0.098462	ft/ft
Hydraulic Profile				-
Profile	S2	Depth, Downstream	1.60	ft
Slope Type	Steep	Normal Depth	1.32	ft
Flow Regime	Supercritical	Critical Depth	4.00	ft
Velocity Downstream	28.87 ft/s	Critical Slope	0.007385	ft/ft
Section				
Section Shape	Box	Mannings Coefficient	0.013	
Section Material	Concrete	Span	7.00	ft
Section Size	7 x 4 ft	Rise	4.00	ft
Number Sections	1			-
Outlet Control Properties	2 1 mar			
Outlet Control HW Elev	798.10 ft	Upstream Velocity Head	2.07	ft
Ke	0.50	Entrance Loss	1.03	ft
Inlet Control Properties				
Inlet Control HW Elev	797.44 ft	Flow Control	Submerged	1.25
Inlet Type 18 to 33.7 ° wingwall	flare, d=0.0830	Area Full	28.0	ft ²
к	0.48600	HDS 5 Chart	9	
M	0.66700	HDS 5 Scale	2	
С	0.02490	Equation Form	2	
Y	0.83000			

CUMPUTATION SHEET INC. SHEET OF 744 Heartland Trail P.O. Box 8923 Madison, WI 53708-8923 (608) 831-4444 FAX: (608) 831-3334 PROJECT / PROPOSAL NAME CHECKED PREPARED PROJECT/PROPOSAL NO. By Bro gin 3091.40 Date By: OPC POO

Internet there are a matternet

Ξ	DATE: 9/2000 TCH	STATION : SEE SKETTHES		EL	Y=	_	COMMENTS	^	Not Rec.	Recommended		Recommended		Not Rec.	Recommended	1
DE	SKETCH	STAT		L=STREAM VELOCITY =	SIREAM VELOCITY=	No -LSA	NTR(_	6.5 1.3 58		10' - 50		6 4.1	6 21	= geland 126' RESPECTIVELI
		EL.	AHW=	EL	1.7	SUL HW=H+ha-LSA	F		1	0.4 1.1	-	1.7 4.0	1	7.3 7.3	7.3' 7.3'	
	TION		ч 	1	HEADWATER CON	OUTLET CONTROL	H de de+D	-	10 10 10 2 2	2		10.4 10.4 8.c		11 11 97	0.8 1.3 1.9	2+1+2
	INFORMATION		TW ₁ = TW ₂ =	025 050 0R 0,000	HEAD	INLET CONT. 0	HW Ke	6-	5.65 0.4	2.6		0.4	_	s	5.0 1.1	OF CULVERTS
ĺ	CHANNEL			SCHARGE , SAY SCHARGE , SAY		SIZE INLE		2- 1.2	Start x12	-	7'X 1 11	T	24" 1.15	-	LL'0 05	0
	HYDROLOGIC AND CHANNEL		= SEE Skemmes	O1 = DESIGN DISCHARGE , SAY Q2 = CHECK DISCHARGE , SAY	RT	D NOIL	11761	162	323 ERT 46101		323	NON COLVERT 46174	15	T		
	нүрас		0 ² = 0 02	<u> </u>	CULVERT	LENTRANCE TUCH		CMP	CULVERT # 1 BOX CULVERT		CULVERT # 2		CUEVERT # 3	11	CMP SIMMADV 0	NEWINO

Figure 7

•

. .

10010			*										DE	SIGNE	DESIGNER: BJA	×
-Uolo Al	HYDROLOGIC AND CHANNEL	ANN		INFORMATION	RM	ATIO	z					SI	SKETCH STATIC	DATE: 0		SEE SKETTHES
01 = <u>SEE SK</u> ETCHES	e TCM	S	WI	n 'i		T		AHW=			11	L B	1 13	$\left\{ \right\}$		
$Q_1 = DESIGN DISCHARGE, SAY Q_{25}$ $Q_2 = CHECK DISCHARGE, SAY Q_{50} OR Q_{100}$	DISCHAP	RGE , S	AY O.	2 I S	0010	1~		ц	·]	MEAN	STRE	So= L= EAM VE	MEAN STREAM VELOCITY=			¥ {
CULVERT DESCRIPTION Q	SIZE	IN	INLET CONT.	INO	HEADWATER	DWATE	- 12	COMPUTATION	151	LION	SIKEAM	AM VE		1		
IENTRANCE TYPE)			30	MH	×e	Ξ	0	d+D	1 F	4	W PO LSO HI	HW	ONTROL W H	VELOCI	COST	COMMENTS
12	30	11.0		,61	0.5	1.0	1.3	6.1	1.0	6.1	1	1	,6.1			Recommended
CULVERT # 5 323 BOX CULVERT 46/FI	×,2 1	- Ze		200		30	0.4	4.0	1.1	4.0		30	5			0
+	-		-										1.0	1		Kecommended
+	-		+											1		
-			-										10	1		
			-				1						1	+		

Figure 7

TABLE 1 - ENTRANCE LOSS COEFFICIENTS

Outlet Control, Full or Partly Full

Entrance head loss $H_e = k_e \frac{v^2}{2g}$

Type of Structure and Design of Entrance

Coefficient ke

1.4

Pipe, Concrete

1

. 1

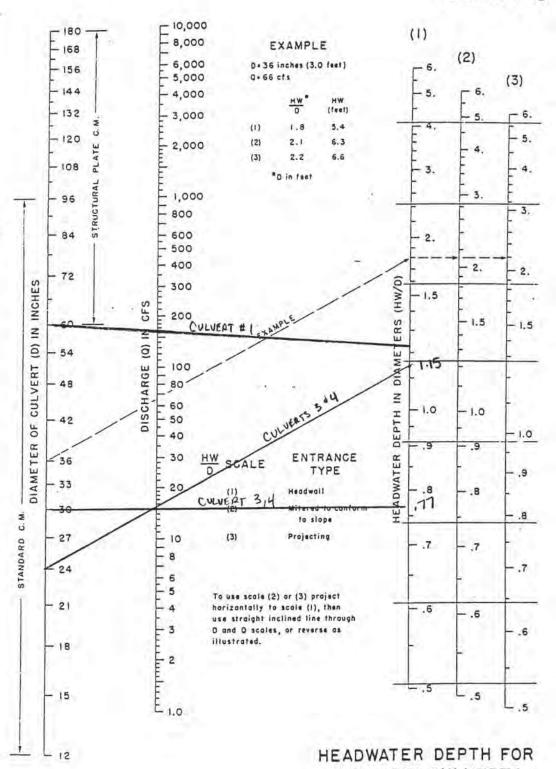
Se 1.

Projecting from fill, socket end (grow	ove	e-e	end	1)		6	÷	0.2
Projecting from fill, sq. cut end .				4		÷		0.5
Headwall or headwall and wingwalls								
Socket end of pipe (groove-end)		• '			÷			0.2
Square-edge				÷		÷.		0.5
Rounded (radius = 1/12D)					÷			0.2
Mitered to conform to fill slope								0.7
*End-Section conforming to fill slope				÷				0.5
Beveled edges, 33.7° or 45° bevels .				÷.		à.		0.2
Side-or slope-tapered inlet								0.2

Pipe, or Pipe-Arch, Corrugated Metal

Projecting from fill (no headwall)	0.9	1
Headwall or headwall and wingwalls square-edge	0:5	1
Mitered to conform to fill slope, paved or unpaved		
· slope	0.7	
*End-Section conforming to fill slope	0.5 - CULVERTS 3,4	
Beveled edges, 33.7° or 45° bevels	0.2	
Side-or slope-tapered inlet	0.2	

Box, Reinforced Concrete

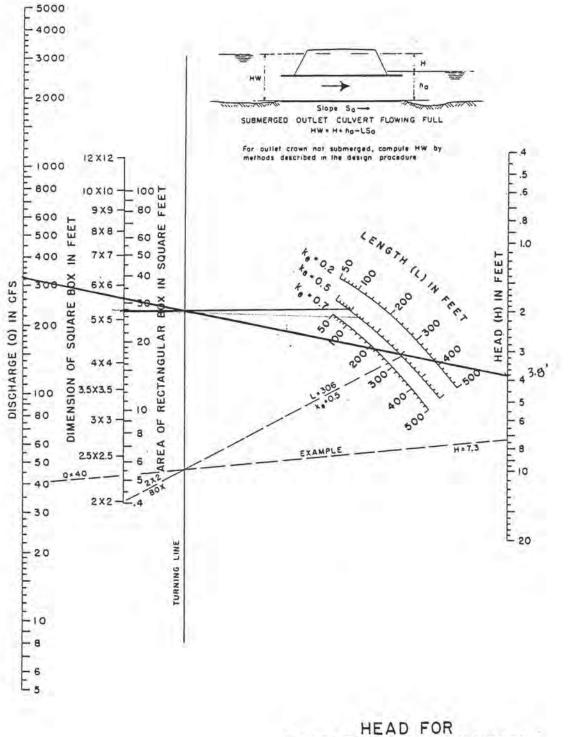

Headwall parallel to embankment (no wingwalls)	
Square-edged on 3 edges	0.5
Rounded on 3 edges to radius of 1/12 barrel	
dimension, or beveled edges on 3 sides	0.2
Wingwalls at 30° to 75° to barrel	
Square-edged at crown	0.4 - CULVERTS 1,2
Crown edge rounded to radius of 1/12 barrel	
dimension, or beveled top edge	0.2
Wingwall at 10° to 25° to barrel	
Square-edged at crown	0.5
Wingwalls parallel (extension of sides)	
Square-edged at crown	0.7
Side-or slope-tapered inlet	0.2

*Note:

"End Section conforming to fill slope," made of either metal or concrete, are the sections commonly available from manufacturers. From limited hydraulic tests they are equivalent in operation to a headwall in both inlet and outlet control. Some end sections, incorporating a closed taper in their design have a superior hydraulic performance." These latter sections can be designed using the information given for the beveled inlet, p. 5-13.

-12 F 600 (1) (3) (2) - 11 F 8 500 L10 8 EXAMPLE 5'x 2' 80x Q = 75 cfs Q/B = 15 cfs/ft. 10 F 400 7 8 6 adata a handa e 7 HW D 6 9 300 Inlet feet 5 6 1.75 3.5 5 (1) 5 8 (2) 1,90 3.8 4 200 (3) 2.05 4.1 4 3 7 E 3 3 CFS PER FOOT 100 6 (D/MH) 80 2 2. 60 HEADWATER DEPTH IN TERMS OF HEIGHT 5 1.5 1.5 RATIO OF DISCHARGE TO WIDTH (Q/B) IN HEIGHT OF BOX (D) IN FEET 40 1.5 30 have have 20 - 1.0 1.0 - 1.0 .9 Angle of 3 Wingwall Flare .9 .9 * 10 .8 8 8 .8 6 WINGWALL FLARE .7 .7 HW SCALE -.6 4 2 30" to 75" (1) 3 .6 ,6 90" and 15" (2) - .5 (3) O* (extensions E 2 of sides) - .5 .5 To use scale (2) or (3) project horizontally to scale (1), then - .4 use straight inclined line through D and Q scales, or reverse as Ę) illustrated. - ,8 .4 .4 E .6 L .35 .35 - .30 1 .5 HEADWATER DEPTH FOR BOX CULVERTS WITH INLET CONTROL

CHART I



2. i o

C. M. PIPE CULVERTS WITH INLET CONTROL

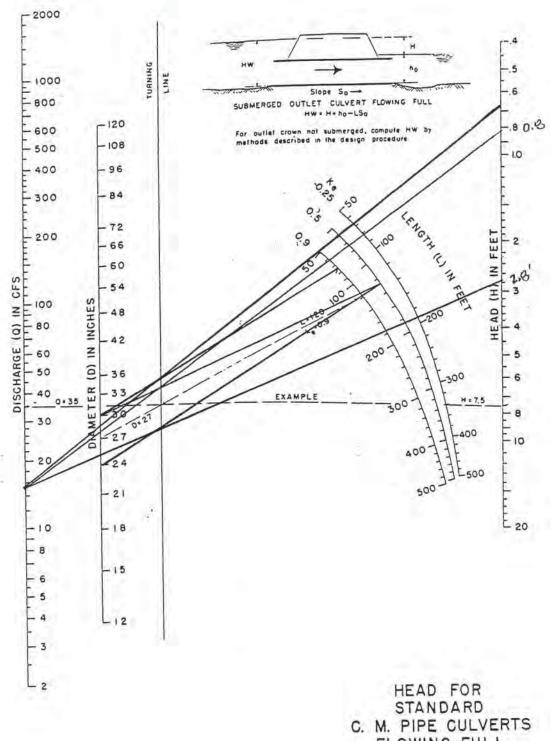

CHART 5

CHART 8 '

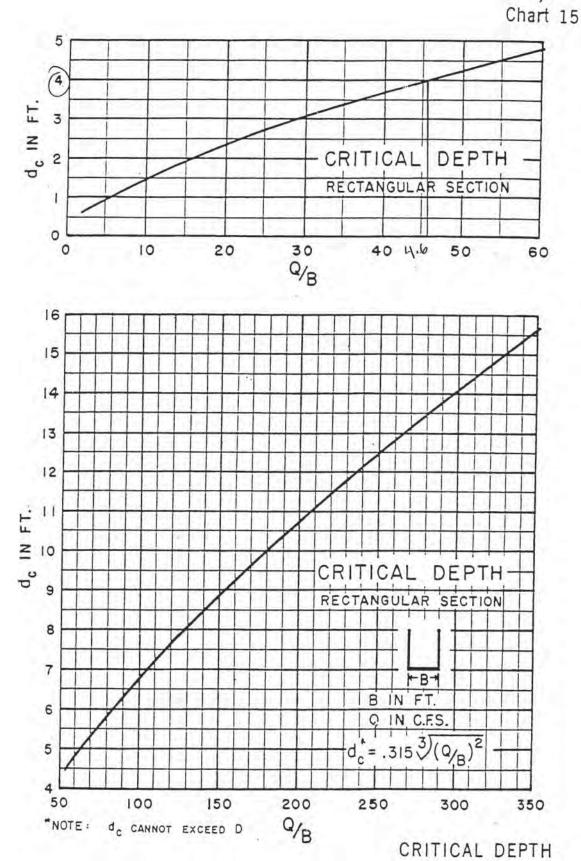
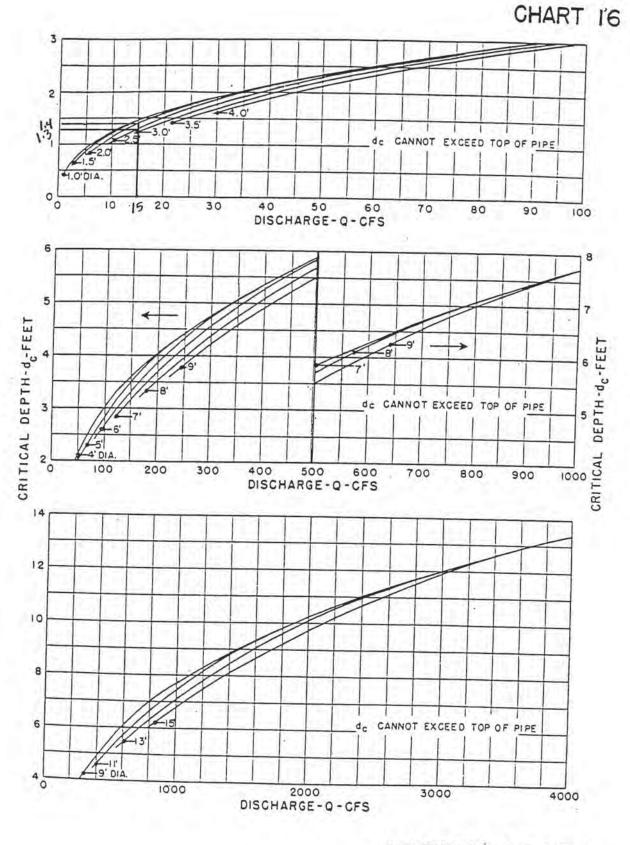

CONCRETE BOX CULVERTS FLOWING FULL n = 0.012

CHART H


÷

FLOWING FULL n=0.024

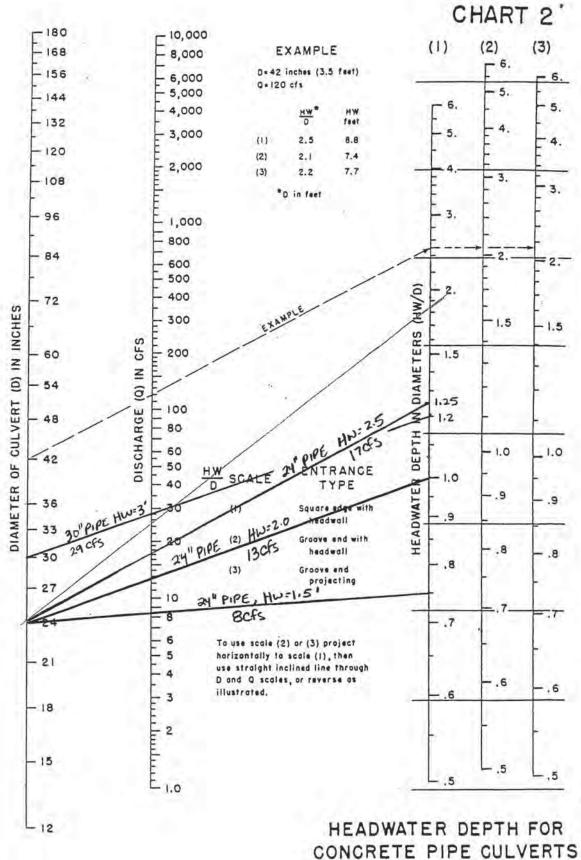
RECTANGULAR SECTION

2

CRITICAL DEPTH CIRCULAR PIPE

744 Heartland Trail Madison, WI 53717-1934 Tel. (608) 831-4444 • Fax (608) 831-3334		SHEETOF
	AND POWER - POO	PROJECT / PROPOSAL NO.
TEORIE JI LING	01	3081.40
PREPARED BY: B.J.K	DATE: 9/00	FINAL D
CHECKED BY:	DATE:	REVISION 🗆

DOWNSLOPE FLUME SIZING


1. SIZE INLET PIPES

NOTE: PEAK FLOWS OBTAINED FROM RUNOFF CALCULATIONS PEAK FLOWS ADDED TO OBTAIN TOTALS (CONSERVATIVE)

ESTABLISH INLET PIPE SIZES AND BERM HEIGHTS USING INLEF CONTROL NOMOGRAPHS!

FLOW RANGE	INL FT PIPE SIZE	Hwy	REQ'O BERM HEIGHT
0-B cfs	24"	1.5'	2.5'
9-13 cfs	24"	2.0'	2.5'
14-17 CFS	24"	2.5	3.0'
18-29 CFS	30"	3.0'	3.5'

WITH INLET CONTROL

744 Heartland Trail Madison, WI. 53717-1934 Tel. (608) 831-4444 • Fax (608) 831-3334		SHEETOF
PROJECT / PROPOSAL NAME / LOCATION: DAIRY SUBJECT: FLUME SIZING	LAND POWER - POO	PROJECT/PROPOSAL NO. 3081 40
PREPARED BY: BJK	DATE: 9100	FINAL D
CHECKED BY:	DATE:	REVISION 🗇

CHECK STRAIGHT PIPE FLUME SIZING

WORST-CASE FLOW - FLUME #1

SLOPE = 20% (AT RIDGE) PIPE DIA = 1.5' MAX FLOW = 48 CFS

FULL PIPE FLOW :

 $\begin{aligned} \mathcal{Q} &= \frac{1.49}{7L} R^{2/3} 5^{1/2} A \\ \mathcal{R} &= 0.010 \text{ for HOPE PIPE} \\ R &= D/4 = 1.5/4 = 0.375 \\ 5 &= 0.20 \text{ F}/\text{F} \\ A &= \pi D^2/4 = \pi (1.5)^2/4 = 1.77 \text{ F}^2 \\ A &= \pi D^2/4 = \pi (1.5)^2/4 = 1.77 \text{ F}^2 \\ \end{aligned}$ $\begin{aligned} \mathcal{Q} \text{ Full} &= \frac{1.49}{0.01} (0.375)^{2/3} (0.20)^{1/2} (1.77) \end{aligned}$

= 61 cfs > 48 cfs 0K V

A WATER RESOURCES TECHNICAL PUBLICATION

Engineering Monograph No. 25

Hydraulic Design of Stilling Basins and Energy Dissipators

By A. J. PETERKA

Denver, Colorado

United States Department of the Interior

BUREAU OF RECLAMATION

NOV 22 1999

STILLING BASIN FOR PIPE OR OPEN CHANNEL OUTLETS

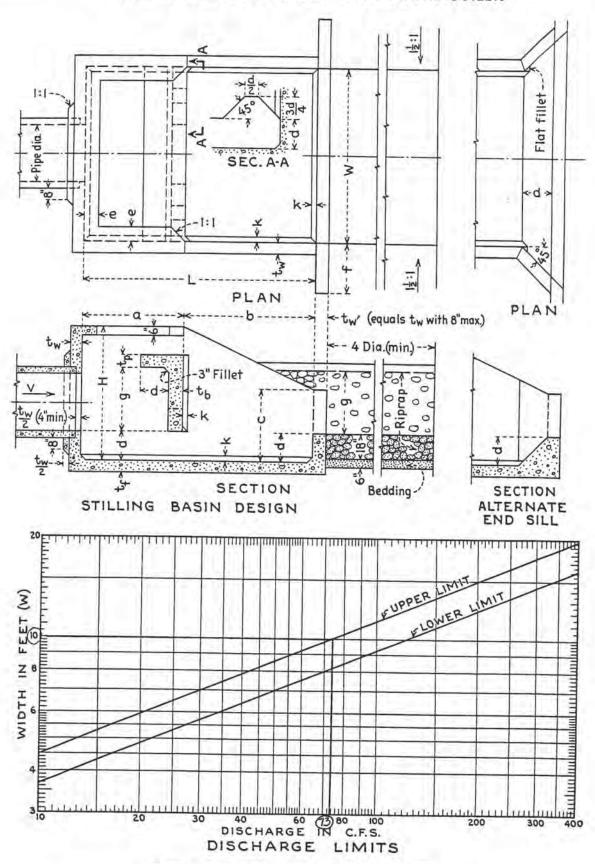


FIGURE 42.-Impact-type energy dissipator (Basin VI).

83

86

÷.

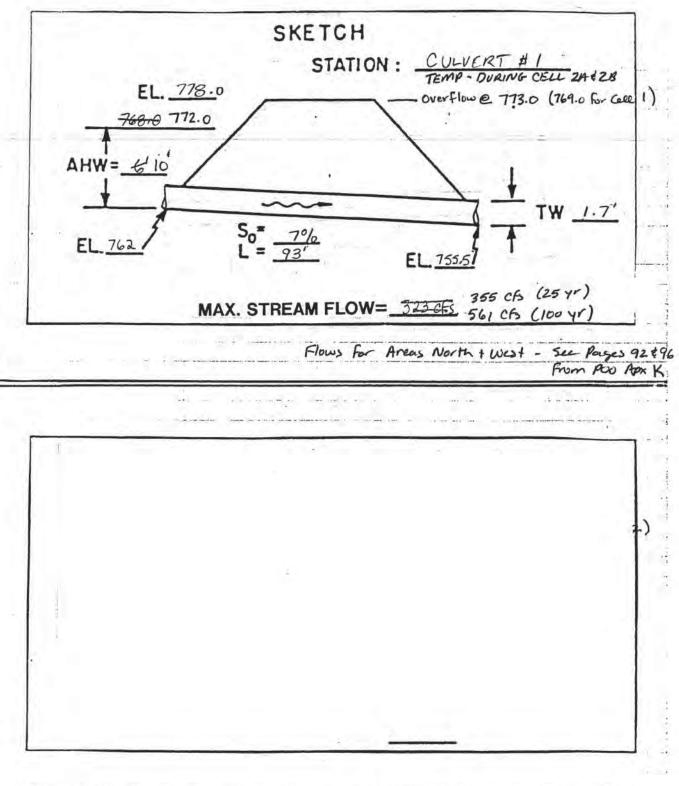
HYDRAULIC DESIGN OF STILLING BASINS AND ENERGY DISSIPATORS

	durre		100										IDC	Inches		
(2) 8 1.77 4 3.14 0 4.91		M N	п Г	đ	q	c	p	ته	-	50	3	t,	43	t,	×	Suggest
1. 77 3. 14 4. 91	(3)	(4) (5	(5) (6)	(2)	(8)	(6)	(01)	(11)	(12)	(13)	(14)	(15)	(16)	(11)	(18)	t (61)
3.14				-	4-1	2-4	0-11	0-6	1-6	9-1		616	4		6	
4.91	-	_	_	-	5-1	2-10	1-2	0-6	5-0	9-6	2	612	2	2	0 0	
	-	8-0 6	-		1-9	3-4	1	0-8	2-6	3-0	9	615		2 5	0 0	1
7.07	-	_	-	-	I-1	3-10	1-1	0-8	3-0	3-6		212	- 0	- 0	0 0	
9.62	-	_		-	8-0	4-5	1-0	0-10	3-0	3-11	- 0	010	0 0	0 0	0 4	
12.57	-	_		-	8-11	4-11	5-0	01-0	3-0	1 2 4	0 0	012	n (1	0 0	* •	(
15.90	-		_	_	10-0	2-2	5-9	1-0	3-0	11-1	201	1012	01	0 0	* *	-
19.63	-	-	-		11-0	5-11	2-2	0-1	3-0	2-4	11	1112	11	0 0	# 4	
28. 27	339 1	10	12-3 22-0	9-3	12-9	6-11	2-9	1-3	3-0	6-2	12	1216	12	0 00	9 9	14.0

TABLE 11.-Stilling basin dimensions (Basin VI). Impact-type energy dissipator.

1 Suggested pipe will run full when velocity is 12 feet per second or half full when velocity is 24 feet per second. Size may be modified for other velocities by Q=AV, but relation between Q and basin dimensions shown must be maintained.

³ For discharges less than 21 second-feet, obtain basin width from curve of Fig. 42. Other dimensions proportional to W; $H = \frac{3W}{4}$, $L = \frac{4W}{3}$, $d = \frac{W}{6}$, etc.

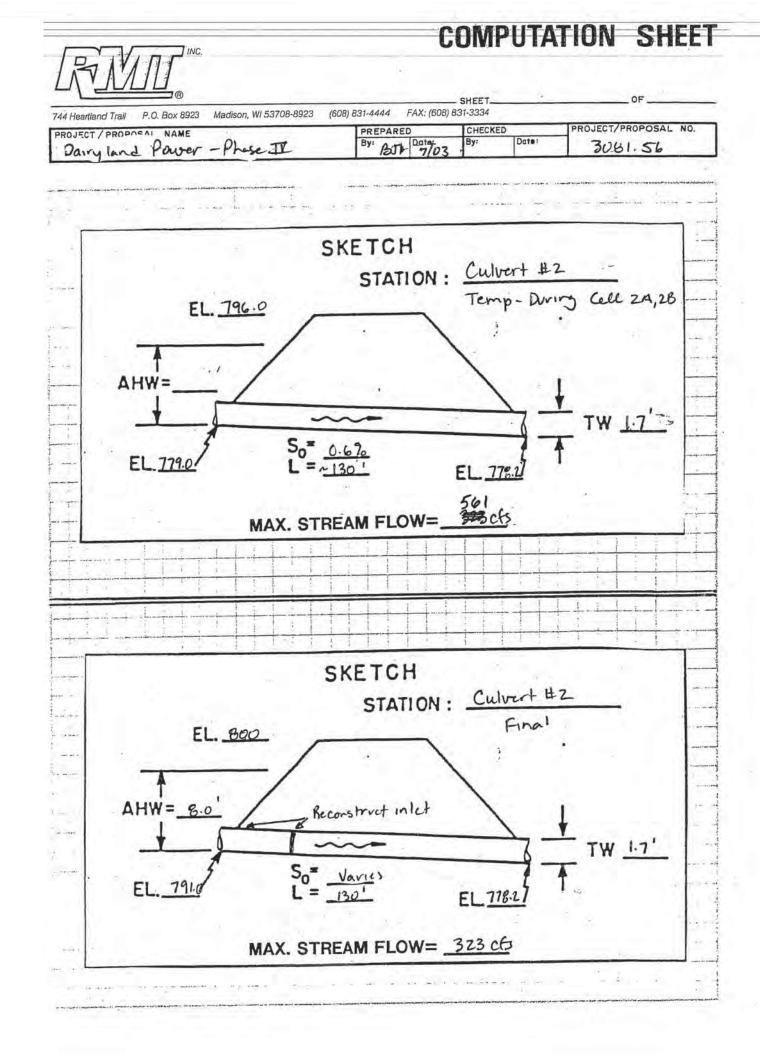

¹ Determination of riprap size explained in Sec. 10.

Calculations – Temporary Culverts, Operational Conditions

Dairyland Power Cooperative Run-On and Run-Off Control System Plan Alma Offsite Disposal Facility, Phase IV Landfill, Alma, Wisconsin

COMPUTATION SHEET JINC. SHEET OF 744 Heartland Trail P.O. Box 8923 Madison, WI 53708-8923 (608) 831-4444 FAX: (608) 831-3334 PROJECT / PROPOSAL NAME CHECKED PREPARED PROJECT/PROPOSAL NO. By: BJA Dotayo Date: DPC - PLAN OF OPERATION By: 3081.40 REV 7/03

Culvert Calculator Report Culvert 1 - Operational (25-Year)


Solve For: Headwater Elevation

Culvert Summary Allowable HW Elevation	773.00 ft		1.01	-
Computed Headwater Elevation	769.75 ft	Headwater Depth/ Height	1.94 355.00	
Inlet Control HW Elev	769.18 ft	Discharge Tailwater Elevation	757.20	1.010
Outlet Control HW Elev	769.75 ft	Control Type	Entrance Control	n
Grades				-
Upstream Invert	762.00 ft	Downstream Invert	755.50	ft
Length	93.00 ft	Constructed Slope	0.069892	ft/ft
Hydraulic Profile				
Profile	S2	Depth, Downstream	2.10	ft
Slope Type	Steep	Normal Depth	1.58	ft
Flow Regime	Supercritical	Critical Depth	4.00	ft
Velocity Downstream	24.17 ft/s	Critical Slope	0.008921	ft/ft
Section				
Section Shape	Box	Mannings Coefficient	0.013	
Section Material	Concrete	Span	7.00	ft
Section Size	7 x 4 ft	Rise	4.00	ft
Number Sections	1			
1				
Jutlet Control Properties		and the second second		
Outlet Control HW Elev	769.75 ft	Upstream Velocity Head	2.50	ft
Ke	0.50	Entrance Loss	1.25	ft
nlet Control Properties				
inlet Control HW Elev	769.18 ft	Flow Control	Submerged	1.7
Inlet Type 18 to 33.7 ° wingwall	flare, d=0.0830	Area Full	28.0	ft²
<	0.48600	HDS 5 Chart	9	
M	0.66700	HDS 5 Scale	2	
C	0.02490	Equation Form	2	
Y	0.83000			

Culvert Calculator Report Culvert 1 - Operational (100-Year)

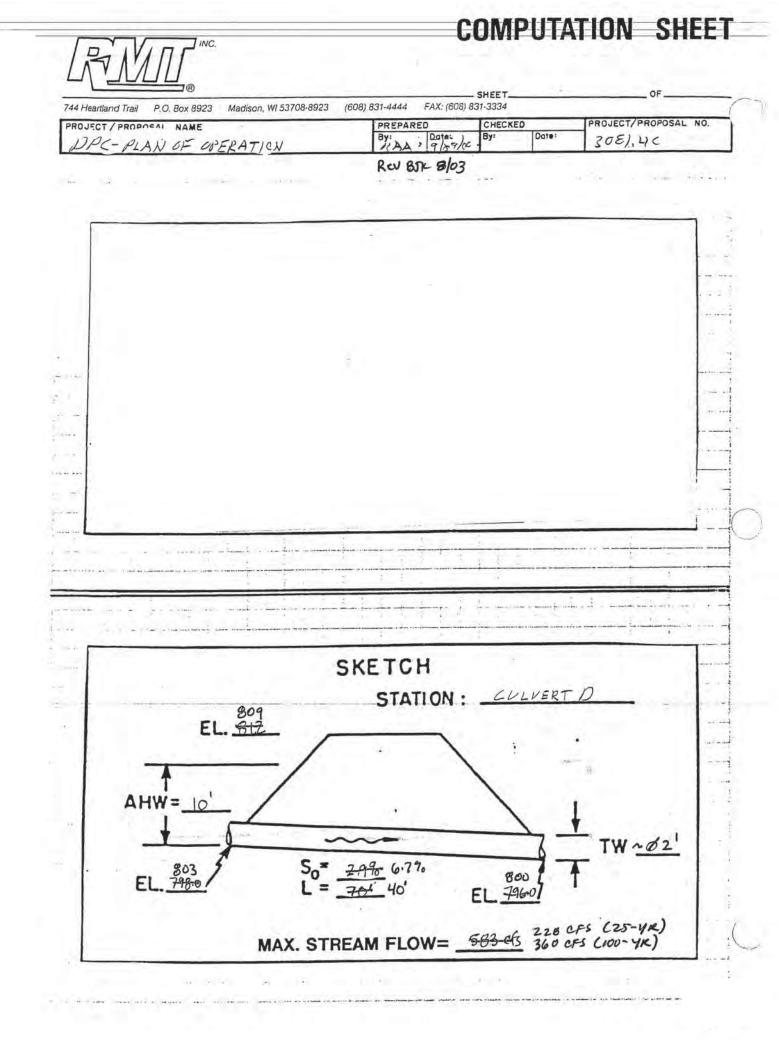
Joive For: Headwater Elevation

Culvert Summary					_
Allowable HW Elevation	773.00		Headwater Depth/ Height	3.34	
Computed Headwater Elevation	775.36		Discharge	561.00	
Inlet Control HW Elev	775.18		Tailwater Elevation	757.20	ft
Outlet Control HW Elev	775.36	ft	Control Type	Entrance Control	-
Grades					
Upstream Invert	762.00	ft	Downstream Invert	755.50	ft
Length	93.00	ft	Constructed Slope	0.069892	ft/ft
Hydraulic Profile					-
Profile	S2		Depth, Downstream	2.93	ft
Slope Type	Steep		Normal Depth	2.18	fť
Flow Regime	Supercritical		Critical Depth	4.00	ft
Velocity Downstream	27.37	ft/s	Critical Slope	0.022277	ft/ft
Section					
Section Shape	Box		Mannings Coefficient	0.013	in.
Section Material	Concrete		Span	7.00	ft
Section Size	7 x 4 ft		Rise	4.00	ft
Number Sections	1				
)					
Sutlet Control Properties					
Outlet Control HW Elev	775.36	ft	Upstream Velocity Head	6.24	
Ke	0.50		Entrance Loss	3.12	ft
Inlet Control Properties					
nlet Control HW Elev	775.18	ft	Flow Control	Submerged	
nlet Type 18 to 33.7 ° wingwall	flare, d=0.0830		Area Full	28.0	ft2
к	0.48600		HDS 5 Chart	9	
M	0.66700		HDS 5 Scale	2	
C	0.02490		Equation Form	2	
Y	0.83000				

Culvert Calculator Report Culvert 2 - Operational

Suive For: Headwater Elevation

Culvert Summary					
Allowable HW Elevation	796.00 ft	Headwater Depth/ Height	3.86		
Computed Headwater Elevation	794.45 ft	Discharge	561.00	cfs	
Inlet Control HW Elev	792.30 ft	Tailwater Elevation	779.90	ft	
Outlet Control HW Elev	794.45 ft	Control Type	Outlet Control	<u>r</u> .,	
Grades					
Upstream Invert	779.00 ft	Downstream Invert	778.20	ft	
Length	130.00 ft	Constructed Slope	0.006154	ft/ft	
Hydraulic Profile	-				
Profile	Pressure	Depth, Downstream	4.00	ft	
Slope Type	N/A	Normal Depth	N/A	ft	
Flow Regime	N/A	Critical Depth	4.00	ft	
Velocity Downstream	20.04 ft/s	Critical Slope	0.022277	ft/ft	
Section					
Section Shape	Box	Mannings Coefficient	0.013		
Section Material	Concrete	Span	7.00	ft	
Section Size	7 x 4 ft	Rise	4.00	ft	
Number Sections	1				
outlet Control Properties					
Outlet Control HW Elev	794.45 ft	Upstream Velocity Head	6.24	ft	
Ke	0.50	Entrance Loss	3.12	ft	
nlet Control Properties					
Inlet Control HW Elev	792.30 ft	Flow Control	Submerged	1.00	
Inlet Type 18 to 33.7 ° wingwall fla	are, d=0.0830	Area Full	28.0	ft ²	
к	0.48600	HDS 5 Chart	9		
M	0.66700	HDS 5 Scale	2		
C	0.02490	Equation Form	2		
Y	0.83000				


.

Culvert Calculator Report Culvert 2 - Final

Solve For: Headwater Elevation

Culvert Summary						
Allowable HW Elevation	799.00	ft	Headwater Depth/ Height	1.78		
Computed Headwater Elevation	798.10	ft	Discharge	323.00	cfs	
Inlet Control HW Elev	797.44	ft	Tailwater Elevation	779.90	ft	
Outlet Control HW Elev	798.10	ft	Control Type	Entrance Control	1	
Grades						
Upstream Invert	791.00	ft	Downstream Invert	778.20	ft	
Length	130.00	ft	Constructed Slope	0.098462	ft/ft	
Hydraulic Profile						
Profile	S2		Depth, Downstream	1.60	ft	
Slope Type	Steep		Normal Depth	1.32	ft	
Flow Regime	Supercritical		Critical Depth	4.00	ft	
Velocity Downstream	28.87	ft/s	Critical Slope	0.007385	ft/ft	
Section						
Section Shape	Box		Mannings Coefficient	0.013		
Section Material	Concrete		Span	7.00	ft	
Section Size	7 x 4 ft		Rise	4.00	ft	
Number Sections	1					
Outlet Control Properties						
Outlet Control HW Elev	798.10	ft	Upstream Velocity Head	2.07	ft	
Ke	0.50	-	Entrance Loss	1.03	ft	
Inlet Control Properties						
Inlet Control HW Elev	797.44	ft	Flow Control	Submerged		
Inlet Type 18 to 33.7 ° wingwall	flare, d=0.0830		Area Full	28.0	ft ²	
к	0.48600		HDS 5 Chart	9		
M	0.66700		HDS 5 Scale	2		
С	0.02490		Equation Form	2		
Y	0.83000					

Page 1 of 1

Culvert Calculator Report Culvert D - 25 Year

olve For: Headwater Elevation

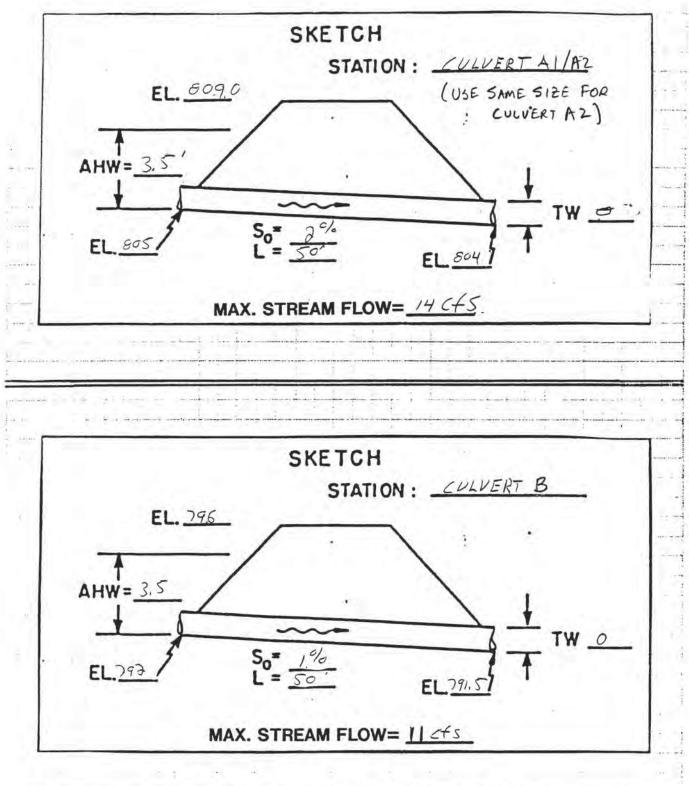
Culvert Summary		-				
Allowable HW Elevation	809.00	ft	Headwater Depth/ Height	1.40		
Computed Headwater Elevation	808.61	ft	Discharge	228.00	cfs	
Inlet Control HW Elev	807.84	ft	Tailwater Elevation	802.00	ft	
Outlet Control HW Elev	808.61	ft	Control Type	Entrance Control	1	
Grades						
Upstream Invert	803.00	ft	Downstream Invert	800.00	ft	
Length	45.00	ft	Constructed Slope	0.066667	ft/ft	
Hydraulic Profile						
Profile	S2		Depth, Downstream	1.74	ft	
Slope Type	Steep		Normal Depth	1.19	ft	
Flow Regime	Supercritical		Critical Depth	3.21	ft	
Velocity Downstream	18.70	ft/s	Critical Slope	0.003975	ft/ft	
Section					-	
Section Shape	Box		Mannings Coefficient	0.013		
Section Material	Concrete		Span	7.00	ft	
Section Size	7 x 4 ft.		Rise	4.00	ft	
Number Sections	1					
	200					
Outlet Control Properties						
Outlet Control HW Elev	808.61	ft	Upstream Velocity Head	1.60	ft	
Ke	0.50		Entrance Loss	0.80	ft	
nlet Control Properties					-	
inlet Control HW Elev	807.84	ft	Flow Control	Submerged		
nlet Type 18 to 33.7 ° wingwall t	flare, d=0.0830		Area Full	28.0	ft2	
K.	0.48600		HDS 5 Chart	9		
M	0.66700		HDS 5 Scale	2		
C	0.02490		Equation Form	2		
Y	0.83000					

Culvert Calculator Report Culvert D - 100 Year

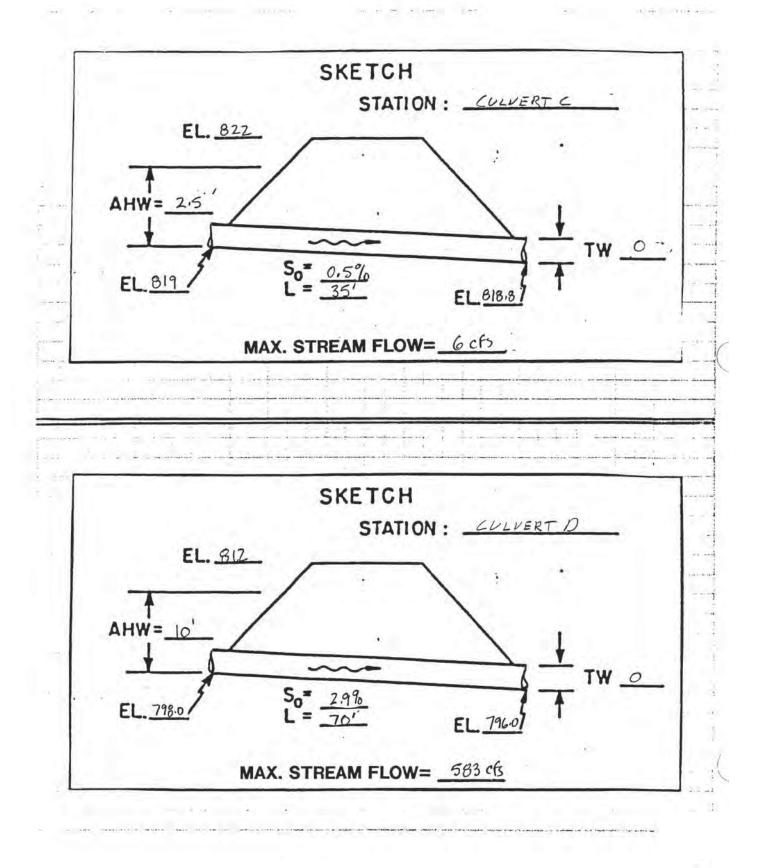
olve For: Headwater Elevation

Culvert Summary						
Allowable HW Elevation	809.00	10	Headwater Depth/ Height	1.96		
Computed Headwater Elevation	810.85	ft	Discharge	360.00	cfs	
Inlet Control HW Elev	810.30	ft	Tailwater Elevation	802.00	ft	
Outlet Control HW Elev	810.85	ft	Control Type	Entrance Control	d.	
Grades						
Upstream Invert	803.00	ft	Downstream Invert	800.00	ft	
Length	45.00	ft	Constructed Slope	0.066667	ft/ft	
Hydraulic Profile				1.000		
Profile	S2		Depth, Downstream	2.52	ft	
Slope Type	Steep		Normal Depth	1.63	ft	
Flow Regime	Supercritical		Critical Depth	4.00	ft	
Velocity Downstream	20.38	ft/s	Critical Slope	0.009174	ft/ft	
Section						
Section Shape	Box		Mannings Coefficient	0.013	0	
Section Material	Concrete		Span	7.00	ft	
Section Size	7 x 4 ft		Rise	4.00	ft	
Number Sections	1	-				
)		_			_	
Jutlet Control Properties						
Outlet Control HW Elev	810.85	ft	Upstream Velocity Head	2.57		
Ke	0.50	_	Entrance Loss	1.28	ft	
nlet Control Properties						
Inlet Control HW Elev	810.30	ft	Flow Control	Submerged	1.7	
nlet Type 18 to 33.7 ° wingwall	flare, d=0.0830		Area Full	28.0	ft ²	
K	0.48600		HDS 5 Chart	9		
M	0.66700		HDS 5 Scale	2		
C	0.02490		Equation Form	2		
Y	0.83000					

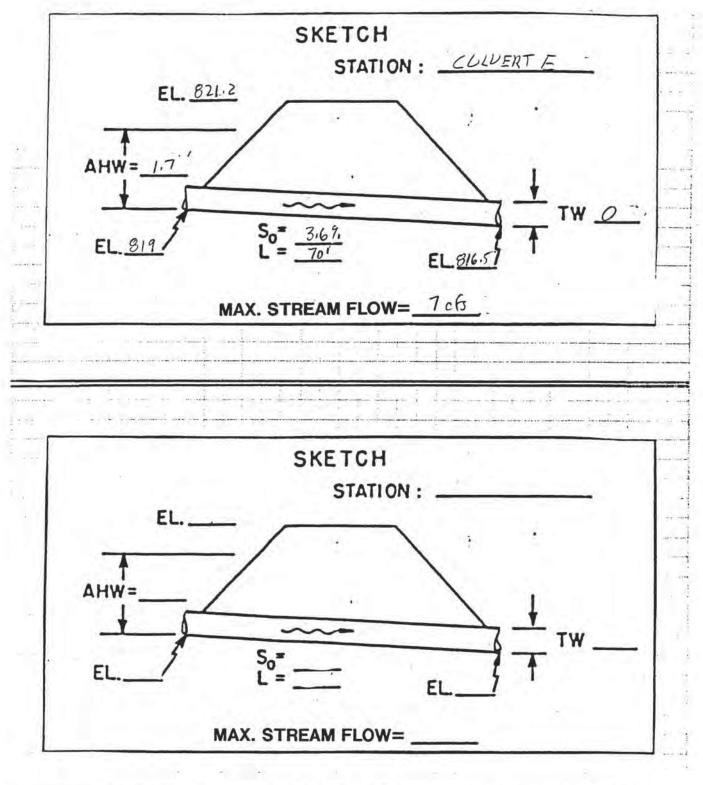
Culvert Calculator Report Flume MH


Solve For: Headwater Elevation

(


Culvert Summary		1	≥ 827.5, adjacent pipe in	rlet	
Allowable HW Elevation	8.00		Headwater Depth/ Height	1.98	
Computed Headwater Elev	ation 825.18	ft	Discharge	73.00	cfs
Inlet Control HW Elev	825.18	ft	Tailwater Elevation	780.67	ft
Outlet Control HW Elev	824.72	ft	Control Type	Inlet Control	
Grades				-	
Upstream Invert	819.25	ft	Downstream Invert	779.00	ft
Length	185.00	ft	Constructed Slope	0.217568	ft/ft
Hydraulic Profile		-	2		
Profile	S2		Depth, Downstream	0.91	ft
Slope Type	Steep		Normal Depth	0.86	ft
Flow Regime	Supercritical		Critical Depth	2.70	ft
Velocity Downstream	40.57	ft/s	Critical Slope	0.006248	ft/ft
Section			A		
Section Shape	Circular	_	Mannings Coefficient	0.010	
Section Material	PVC		Span	3.00	ft
Section Size	36 inch		Rise	3.00	ft
Number Sections	- 1				
1					
Outlet Control Properties					
Outlet Control HW Elev	824.72	ft	Upstream Velocity Head	1.85	ft
Ke	0.50	_	Entrance Loss	0.92	ft
Inlet Control Properties					
Inlet Control HW Elev	825.18	ft	Flow Control	Submerged	14
Inlet Type So	quare edge w/headwall		Area Full	7.1	ft²
к	0.00980		HDS 5 Chart	1	
M	2.00000		HDS 5 Scale		
C	0.03980		Equation Form	1	
Y	0.67000				

I WIRKER JUPPLY LARRY WOOD 262 -255- 3030 lid and 500 5/27/03 5 GEVEN 7 VF BARREL PLATE I" 2200 - 2,500 (inch. \$500 for lid) ER TO PLAN SHEET 6) 3.75' 400 SERIES POINT SEE PLAN SHEETS 5 & 6 SE 500 SERIES POINT V 825.19 1% SLOPE 824.0 SEE PLAN SHEETS 5 & 6 ELEVATION VARIES MIN. 822.75 320,7 N MIN. (GCL) LEACHATE GEOTEXTILE CUSHION COLLECTION/ 319.25 60 MIL HDPE GEOMEMBRANE -SYSTEM 2' MIN SEE DETAIL (COMPACTED SELECT LOW PERMEABILITY SOIL


FIN				U	UMPUI	ATION SHEET
744 Heartland Trail	P.O. Box 8923	Madison, WI 53708-8923	(608) 831-44	44 FAX: (608)	- SHEET	OF
PROJECT/PROPOSAL NAME DPC-PLAN OF OPERATION			PRE By:	A , Dote:	CHECKED	PROJECT/PROPOSAL NO. 308/,40

LANDI "NC.		UNPUTA	ATION SHEET
744 Heartland Trail P.O. Box 8923 Madison, WI 53708-8923 (60	08) 831-4444 FAX: (608) 8	SHEET	OF
DPC-PLAN OF OBERATION	PREPARED By: Date:	CHECKED By: Date:	PROJECT/PROPOSAL NO.

RAN					JIVIT	UIF	ATION	SHEEI
744 Heartland Trail	P.O. Box 8923	Madison, WI 53708-8923	(608) 831-4444	FAX: (608) 83	HEET			_ OF
PROJECT / PROP	and the second se	OPERATION	PREPAR By: AA		CHECKED By:	Dates	PROJECT/P 3081,1	PROPOSAL NO.

DESIGNER: UAA	ETCH	- T		COMMENTS		OK	o,X		RECOMMENDED		OK
ESIGNE	CH CH		1 3	TLET 1	AE1 00					1	-
	SKETCH		STREAM VELOCITY =								
	0	5 19	So" L"	AM V	MH		ss.e		1-1		<u>e</u>
		INI		STREAM + ho -LSo	LSo		-		0.1		2.0
			MEAN	SFISH	04		SH-1	-	<u>و</u>	1	Ξ
		- MHY	3	151 1	-				0		5
		A	ω.	COMPIC	2.1		Shil	1	2	D'I	
	N			L CO	141		1.4	1.2	1	0.0	
	ATIC	1	1-	HEADWATER OUTLET	-		1.6	0.8		1.0	-
	ORN	1	000	HEAD	6.0		6.0	6.0		6.0	
	INF	TW ₁ = 1 1W ₂ = 1	025 050 OR	INLET CONT	9.3	1	2	2.0		1,3	
1	ANNEL INFORMATION		E , SAY	INLET	1.15	(P	1.0		.65	TIONS:
100		ICHES	SCHARG	SIZE	1,he	11-	. R/	24"		24"	
5	O ANE	SEE SKETCHES	ESIGN DI	ø	H	1	Z			0	OMME
PROJECT: 201 C	HYDROLOGIC AND CH	01 = <u>564</u> 02 =	$\left(\begin{array}{c} Q_1 = \text{ DESIGN DISCHARGE , SAY } Q_{25} \\ Q_2 = \text{ CHECK DISCHARGE , SAY } Q_{50} \text{ OR } Q_{100} \end{array}\right)$	CULVERT DESCRIPTION ENTRANCE TYPE)	CULVERT A CIND-PROTECTIN		Concrete	CULVERT B	CMB	CULVERT C	SUMMARY & RECOMMENDAT

<u>,</u> 1

Figure 7

÷

4

DESIGNER: J3AA	DATE: 9/39/00 TCH STATION: SEE SKETCHES				COMMENTS	ok					
L.	9/9-	1	EL		COST	1			-	-	
ESIGNI	DATE: TCH TATION		, , ,	"	ELOCIT.	^			1		-
ā	DATI SKE TCH STATIC	5	LIDCII	VELOCITY=	M H M	1.4			1		
	S	$\langle B $	MEAN STREAM VELOCITY =	AM VE	HW			is			
			STRE	STREAM	$\frac{HW=H+h_0-LS_0}{W}$	215		and			
5.9	E.	116	EAN	ATION	+ H = 04	トニ		1,2			
		MHA .		5	F	0		16413			
		AH -	ц	COMPUTATION	H dc dc+D	1:1		cue			-
	z	£.		- 12	que la	0.8					-
	INFORMATION	1	1~	HEADWATER	H	0.4		PERMARNI	1	1	-
	ORM		0100	HEAD	×	6.0		PER		T	
	INF	TW, =	25 50 OR	INLET CONT	MH	1.4		U 15			1
<u>,</u>	NEL	11	SAY Q	TET	No	1.0	1	Few	+	+	
100	HAN	S	ARGE	14			-	SAME	+	+	ATION
1	ND C	TCH	DISCH	3/12		24"	1		-		VEND
CPC -	IC A	XX	DESIGN	0		7		583			COMN
PROJECT: LIPC	HYDROLOGIC AND CHANNEL	01 = <u>SEE SKE</u> TCHES	(Q1 = DESIGN DISCHARGE , SAY Q25 (Q2 = CHECK DISCHARGE , SAY Q50 OR 0100	CULVERT DESCRIPTION	LULVERTE	Chip-pile JECTINK		CULVERT D 7'XY'BOX			SUMMARY & RECOMMENDATIONS

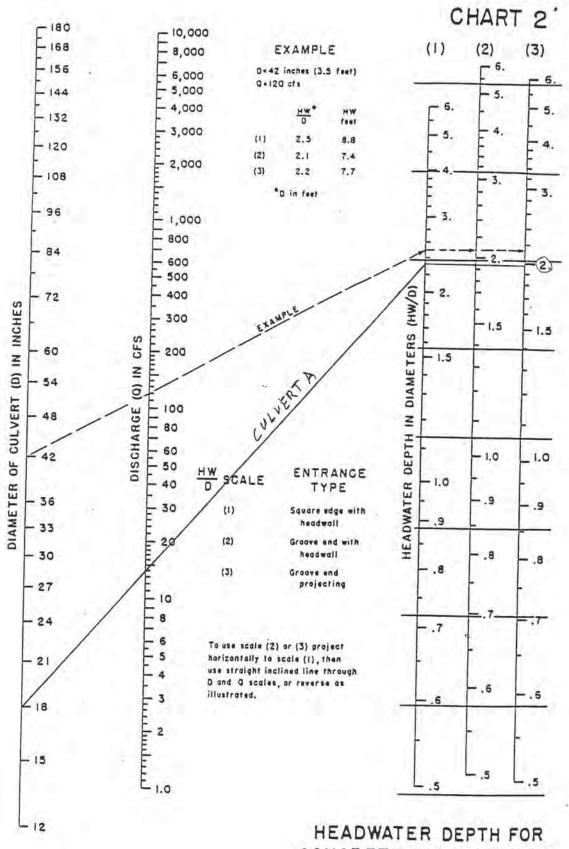
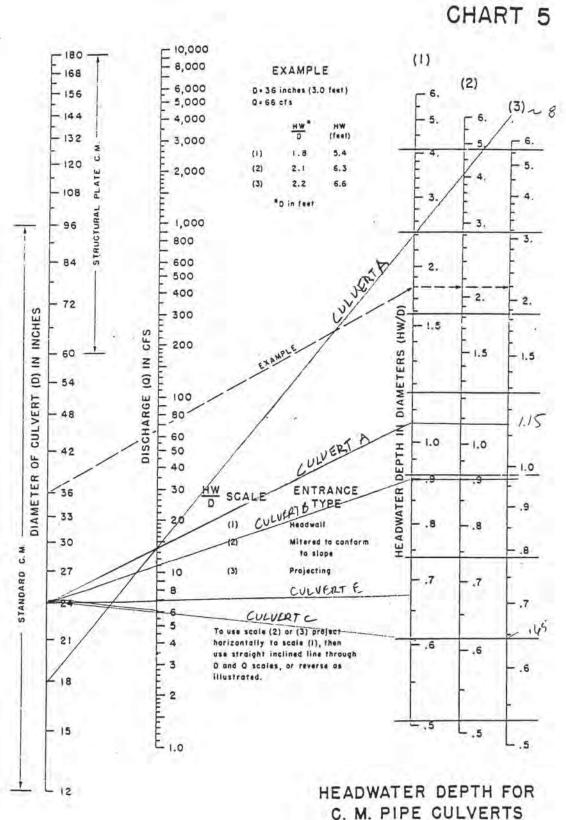

8

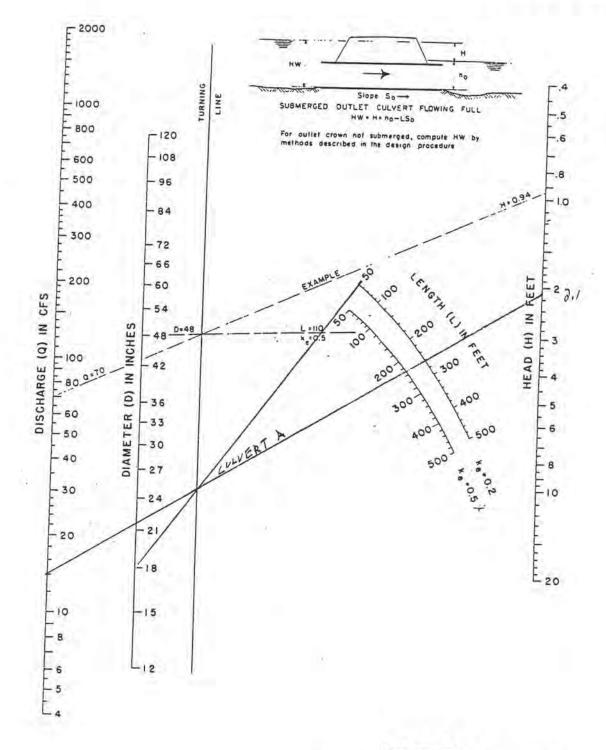
Figure 7

ŝ


.

-

0.770


CONCRETE PIPE CULVERTS WITH INLET CONTROL

.

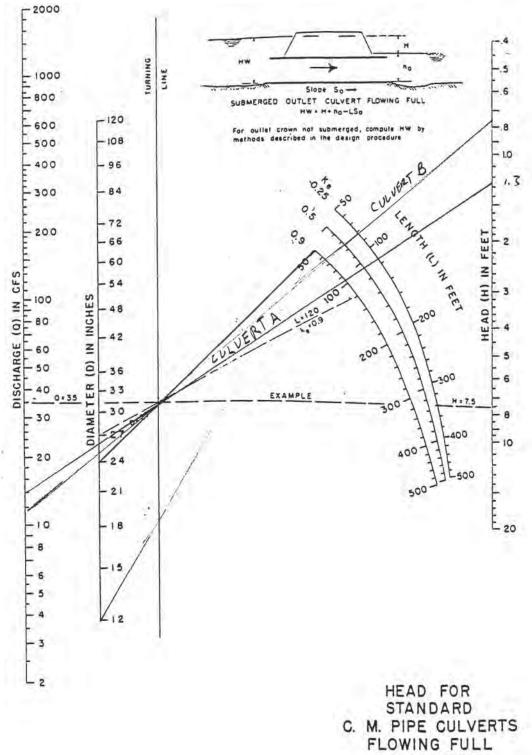

WITH INLET CONTROL

CHART 9

HEAD FOR CONCRETE PIPE CULVERTS FLOWING FULL n=0.012

CHART H

n=0.024

4.0 1.4 3.0 de CANNOT EXCEED TOP OF PIPE 0.0 O'DIA. CULVERTA" C/E 10 DISCHARGE-Q-CFS CULVERT B + CRITICAL DEPTH-d_FEET CRITICAL DEPTH-dc-FEET de CANNOT EXCEED TOP OF PIPE +7 6' 5' 4'DIA DISCHARGE -Q - CFS T de CANNOT EXCEED TOP OF PIPE 43' 9' DIA 10.00 DISCHARGE - Q - CFS

CRITICAL DEPTH CIRCULAR PIPE

CHART I'6

TABLE 1 - ENTRANCE LOSS COEFFICIENTS

Outlet Control, Full or Partly Full

Entrance head loss $H_e = k_e \frac{v^2}{2g}$

Type of Structure and Design of Entrance

Coefficient ke

٩.

Pipe, Concrete

4 . 10

New York

. th

24

8

1. A. A.

1.

Projecting from fill, socket end (groove-end)				0.2
Projecting from fill, sq. cut end	4		÷ .	0.51
Headwall or headwall and vingwalls Socket end of pipe (groove-end)	1			0.2
Square-edge			1997 - M	0.5
Rounded (radius = 1/12D)	÷	•	• •	0.2
Mitered to conform to fill slope *End-Section conforming to fill slope				0.7
Beveled edges, 33.7° or 45° bevels				0.5
Side-or slope-tapered inlet				0.2
	1.20	1	2	

Pipe, or Pipe-Arch, Corrugated Metal

Projecting from fill (no headwall)	0.9
Headwall or headwall and wingwalls square-edge	0:5
Mitered to conform to fill slope, paved or unpaved	
• slope	0.7
*End-Section conforming to fill slope	0.5
Beveled edges, 33.7° or 45° bevels	0.2
Side-or slope-tapered inlet	0.2

Box, Reinforced Concrete

Headwall parallel to embankment (no wingwalls)	
Square-edged on 3 edges	0.5
dimension, or beveled edges on 3 sides	0.2
Wingvalls at 30° to 75° to barrel	
Square-edged at crown	0.4
Crown edge rounded to radius of 1/12 barrel	
dimension, or beveled top edge	0.2
Wingwall at 10° to 25° to barrel	
Square-edged at crown	0.5
Wingwalls parallel (extension of sides)	0.9
Square-edged at crown	07
Side-on close terrent data	0.7
Side-or slope-tapered inlet	0.2

*Note: "End Section conforming to fill slope," made of either metal or concrete, are the sections commonly available from manufacturers. From limited hydraulic tests they are equivalent in operation to a headwall in both inlet and outlet control. Some end sections, incorporating a closed taper in their design have a superior hydraulic performance." These latter sections can be designed using the information given for the beveled inlet, p. 5-13.

Vegetation Information

Dairyland Power Cooperative Run-On and Run-Off Control System Plan Alma Offsite Disposal Facility, Phase IV Landfill, Alma, Wisconsin

***** NORTH AMERICAN GREEN - ECHDS VER.IV - SLOPE PROTECTION - ENGLISH USER SPECIFIED - PERMANENT PROTECTION RESULTS ***** PROJECT NAME: Dairyland Power Coop. PROJECT NO .: 3081.33 COMPUTED BY: BJK DATE: 10-06-1998 SLOPE DESCRIPTION: 2:1 Slopes Slope Gradient: 2.00:1 Slope Length: 50 feet Soil Type: Clay Loam (K= 0.21) -Annual R Factor: 125.0 Slope Reach Material Type Density LS C feet 0 - 30 Est. Veg. 75-95% 4.10 .020 Mix 30 -50 P300 75-95% 7.35 .002 Mix Slope Reach Material Type Density ASLbare ASLmat SLT Sf Recommend feet inch inch inch For Slope's 0'-30' Use Mix No. 20 Vegetation 0 -30 Est. Ved. Mix 75-95% 0.641 0.013 0.03 2.3 STABLE 30 -50 P300 75-95% Mix 1.149 0.002 0.03 13.1 STABLE For slopes > 30', use permanant 0 . 50 Composite 0.844 0.009 evosion matting on bottom Vegetation Density=Percentage of soil coverage provided by vegetation Portion of slope (below 30') C=Cover material performance factor (Fraction of soil loss of unprotected) And No. 20 Vesetation on ASLbare=Average Soil Loss potential of unprotected soil (uniform inches) upper portion ASLmat=Average Soil Loss potential w/material (uniform inches) SLT=Soil Loss Tolerance for slope segment (uniform inches) Sf=Safety Factor - See Attached For Composite=Average soil loss from total slope length (uniform inches) Vegetation Types

STATE OF WISCONSIN DEPARTMENT OF TRANSPORTATION	SPECIFICATIONS	FOR	HIGHWAY AND STRUCTURE CONSTRUCTION	TIME ENVIRON

***** VEGETATION SELECTION ***** ***** North American Green *****

Region Number: 1

Predominant Soil Type: Clay - Clay Loam

Moisture Regime Conditions: Normal Moisture

Planned Maintenance: Medium - High Maintenance

		Growth	Seed	Rate	
	Longevity	Habit	lb/ac	kg/ha	
Grasses					
Tall Fescue (Festuca arundinacea)	P	В	200	224	(NO. 20)
Chewings Fescue (Festuca rubra, commutata)	. P	в	120	134	(No . 10)
Kentucky Bluegrass (Poa pratensis)	P	S	80	90	(NO 10, No. 20)
Perennial Ryegrass (Lolium perenne)	P	В	160	179	(NO. 10, NO 20)
Annual Ryegrass (Lolium multiflorum)	A	в	160	179	0.00,00,00,00,
Orchardgrass (Dactylis glomerata)	Р	В	40	45	
Timothy (Phleum pratense)	P	в	80	90	
Creeping Red Fescue (Festuca rubra)	Р	S	120	134	
Legumes					
Alsike Clover (Trifolium hybridum)	P		15	17	
White Dutch Clover (Trifolium repens)	P		5	6	
White Sweet Clover (Melilotus alba)	Ρ		15	17	
	ي يو				