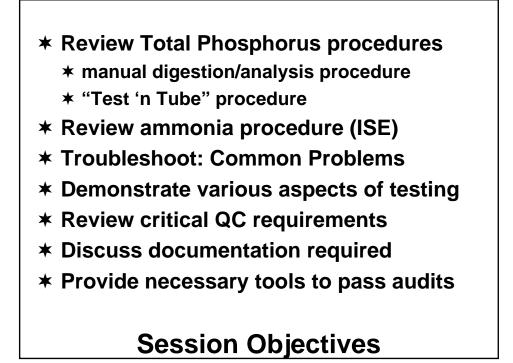
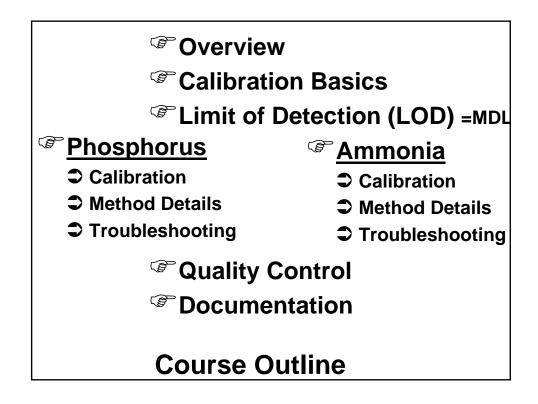

Phosphorus and Ammonia: Testing, QC, and Troubleshooting

Graham Anderson Senior Chemist

George Bowman Inorganics Supervisor State Laboratory of Hygiene




Rick Mealy Regional Certification Coordinator DNR-Laboratory Certification

Any reference to product or company names does not constitute endorsement by the Wisconsin State Laboratory of Hygiene, the University of Wisconsin, or the Department of Natural Resources.

Disclaimer

Ammonia

- Major excretory product of animals
- Oxidation of ammonia leads to nitrite and then nitrate
- Ammonia is toxic to organisms at high pH levels
- Total nitrogen reaching a municipal WWTP averages 15 - 50 mg/L
- 60% is ammonia

In WI about 40% of small WWTP labs required to test for NH₃

You should be aware that the rules relating to ammonia are changing, maximum allowable levels are dropping, and more plants could be affected.

Ammonia Sources

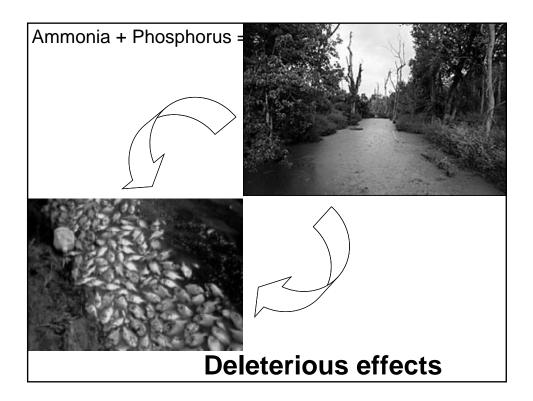
Nitrification [NH₃ -> NO₂⁻ -> NO₃⁻]

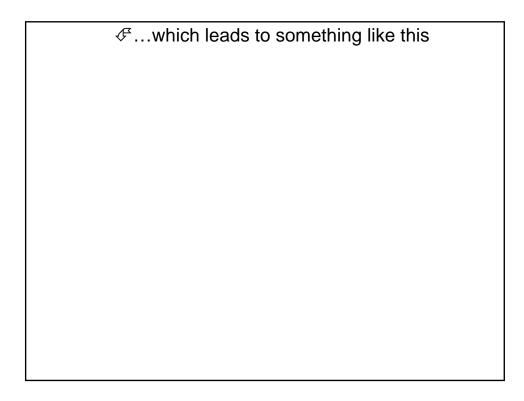
- Nitrosomonas : oxidation of ammonia to nitrite (NO₂-)
- Nitrobacter : oxidation of nitrite to nitrate (NO_3)
- Oxidation of ammonia to nitrate requires 4.57 mg of oxygen for every mg of ammonia oxidized.
- Between 7.07 and 7.14 mg of alkalinity (as CaCO₃) consumed per mg of ammonia oxidized.
- Inhibited at 10°C or less.
- Optimum temperature is about 25° C.

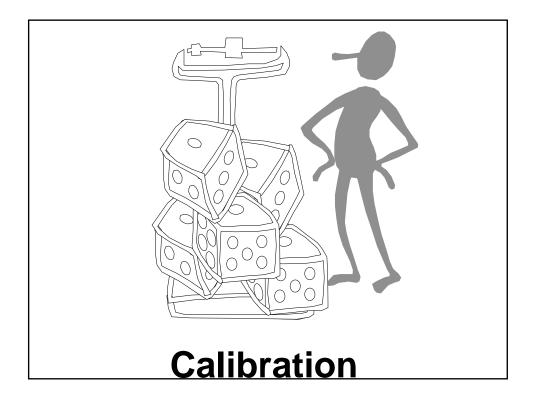
Ammonia and Nitrification

NH₃ level	Effects
0.06 mg/L	fish can suffer gill damage
0.1 mg/L	Usually indicative of polluted waters
0.2 mg/L	Sensitive fish like trout and salmon begin to die
2.0 mg/L	Ammonia-tolerant fish like carp begin to die

Ammonia Critical Levels


Phosphorus


- Typically from fertilizers or phosphate-based detergents (Alconox contains about 8.7%)
- Natural sources include phosphate-containing rocks and solid or liquid wastes
- Key growth-limiting material for phytoplankton
- The human body releases about a pound of phosphorus per year
- Widely used in power plant boilers to prevent corrosion and scale formation
- As of January 1999, approximately (33%) of WI wastewater labs must test for phosphorus.
- ...and it continues to be written into permits


Phosphorus sources

Phosphorus levels and effects		
mg/L as P	Effects	
0.003-0.010	Amount of phosphate-phosphorus in most uncontaminated lakes	
0.008	Accelerates the eutrophication process in lakes	
0.033	Recommended maximum for rivers and streams	

Phosphorus Critical Levels

Calibration Curve Frequency-Basics

- For best results, should be run daily.
- Alternatively, a "full" calibration can be analyzed initially and verified (with one or more standards) each day of analysis.
- Whenever any reagent is replaced.
- Ammonia: Curve should be re-prepared with each analysis
 The method calls for a daily calibration
- Phosphorus:

MUST prepare new calibration when check standards fail, GLP suggests, "whenever any reagent is replaced".

Bottom line: we'd like a new curve at least quarterly.

Calibration Frequency

Use an appropriate number of standards MUST be constructed using <u>at least</u> 3 standards <u>and</u> a blank. [WI] NR 149.13 (3) (b) ... A calibration shall consist of at least 3 standards and a blank except as allowed in approved methods.

standards and a blank except as allowed in <u>approved methods</u> using **ion selective electrodes** or inductively coupled plasma.

To include...or not to include (a blank)?

• Rule of thumb:

if you can adjust your instrument to read zero with a blank, then <u>include</u> the blank in your calibration curve.

Including a blank is generally appropriate for colorimetric procedures

Ammonia

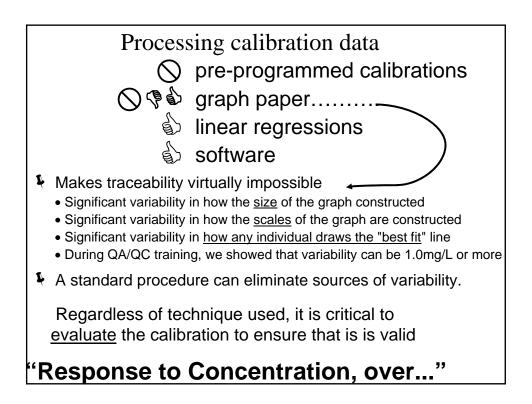
DO analyze a blank Do NOT include in calibration.

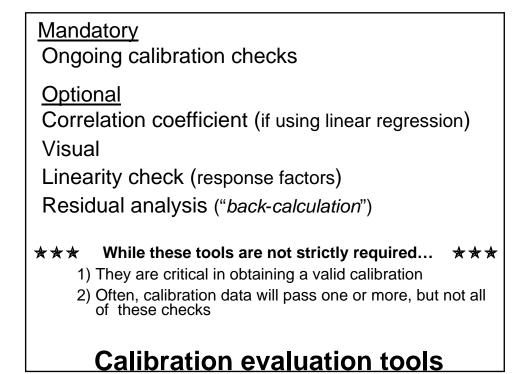
Phosphorus

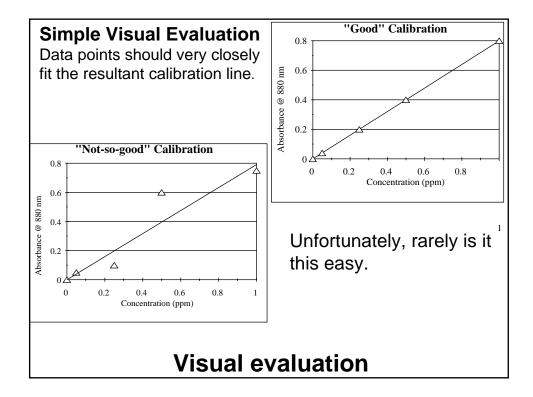
DO analyze a blank DO include in calibration.

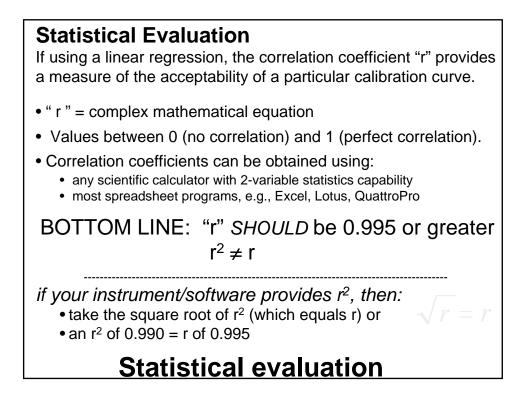
There aren't

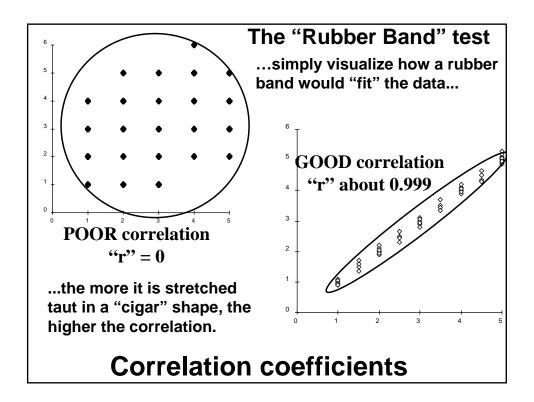
anv!

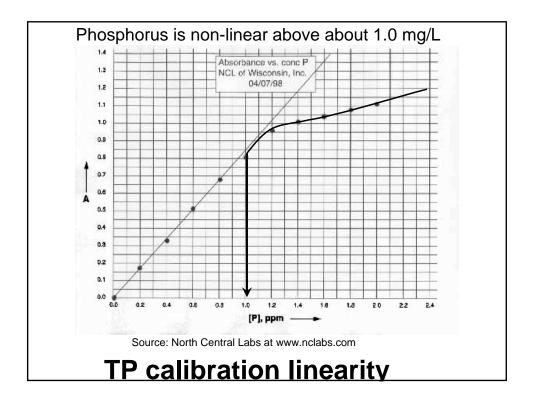

Number of standards

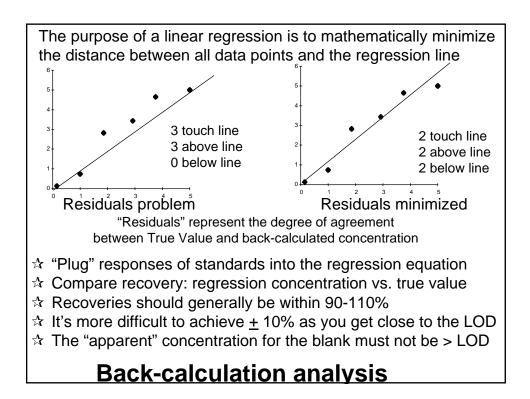

Define your calibration range properly

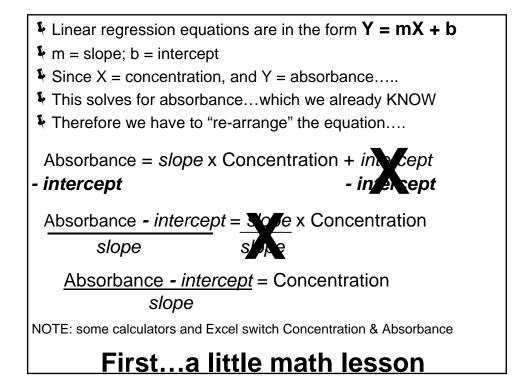

- Range should be appropriate for the samples being analyzed (i.e. don't calibrate from 1- 5 mg/L when samples range 0.05 0.5 mg/L).
- Be aware of the linear range of the method used!
- Standards should also be evenly spaced. 0.1, 0.2, and 10.0 are NOT good levels for a calibration NOTE: This is a <u>general</u> rule: electrodes are a bit different!
- Where possible...bracket samples with calibration standards. (but if your effluent NH₃ runs about 0.05ppm, DON'T use a standard at 0.02!)
- Low standard not more than 2 5X the LOD (best is = LOQ).
- Suggested range Ammonia: 0.2, 2, 20 mg/L

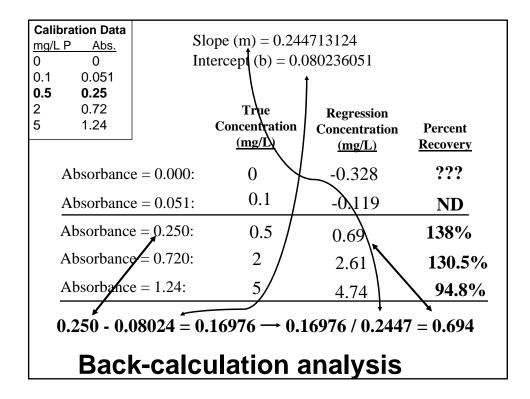

Phosphorus: 0, 0.1, 0.2, 0.4, 0.6, 0.8, 1 mg/L NOTE: Calibration ranges for ammonia may change with the season


Calibration Range

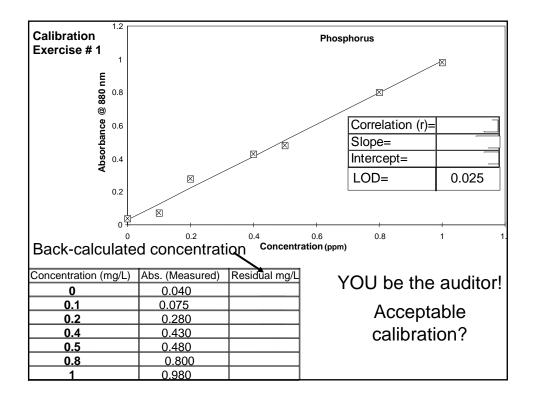

- A Most analyses have a limited linear range
- Deviation from linearity usually related to concentration
- Can occur at both the lower and the upper end
- Unsure? Review "response factors" for each calibration level
- Look for the point at which deviation occurs


Response Factor (RF) = <u>Response (</u>= *Absorbance*) Concentration

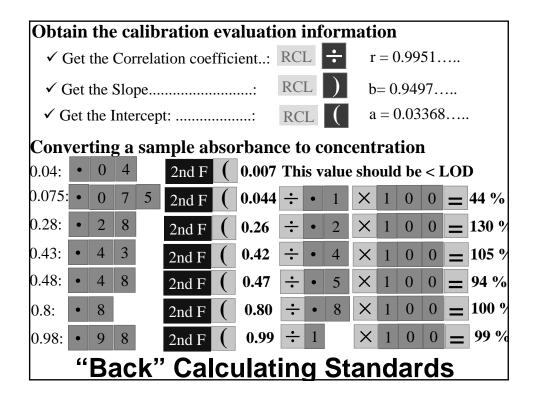

*** If you identify **non-**linearity, reduce the calibration range ***

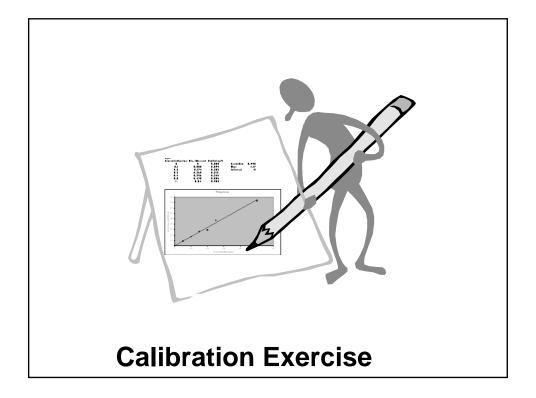

Linearity check

		RF		
mall	Aha	Abs		e in Abs.
mg/L	Abs.	mg/L	Per	0.2 mg/L
0	0			
0.20	0.175	0.875	Low end variability	0.175
0.40	0.325	0.813		0.150
0.60	0.500	0.833	Midpoint: stability	0.175
0.80	0.675	0.844		0.175
1.00	0.825	0.825	<u>│↓</u>	0.150
1.20	0.950	0.792	Steady decline in RF	0.125
1.40	1.000	0.714	characteristic of	0.050
1.60	1.050	0.656	exceeding linear	0.050
1.80	1.075	0.597	range	0.025
2.00	1.150	0.575	[↓	0.075
Data Source: North Central Labs at www.nclabs.com Linearity check - response factors				

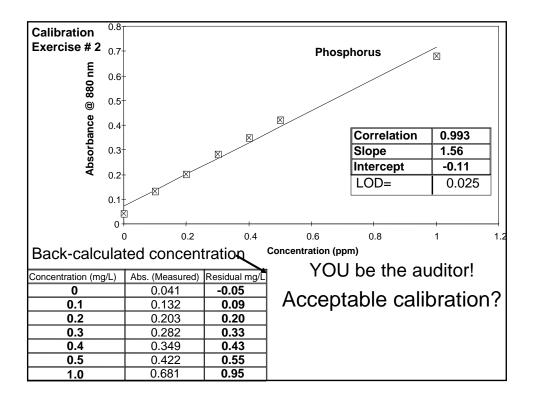

Analytical Evaluation - ongoing

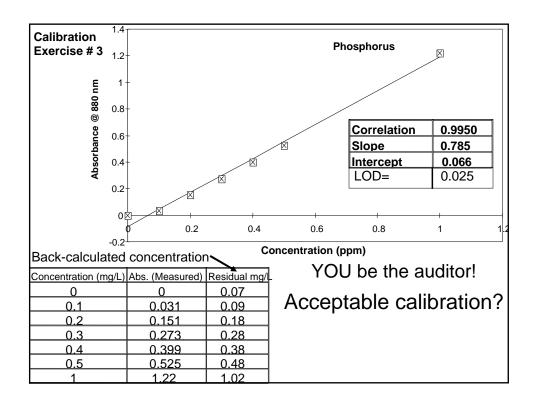
Periodically confirm that response has not changed from initial.

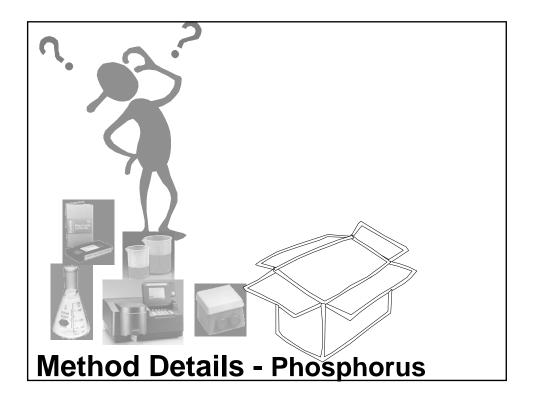

- Use a midpoint standard (check standard) and blank.
- Calculate % recovery.
- Check at <u>beginning</u>, <u>every 10</u> samples and <u>end</u> of each batch. For WI WWTPs doing 1-2 samples/day, only need one Recovery must be within 90-110% for phosphorus and ammonia. (in WI)

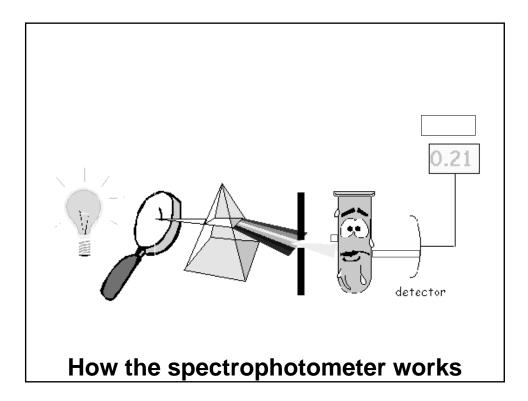

% Recovery = <u>measured Value</u> x 100 True value

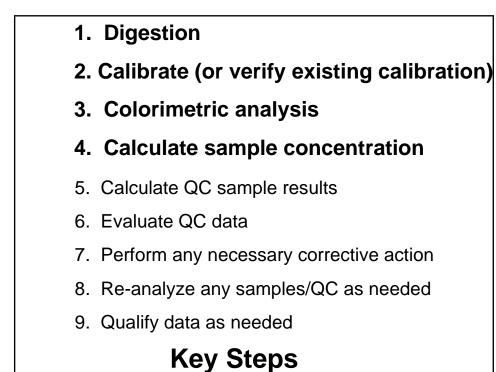
Calibration - daily checks

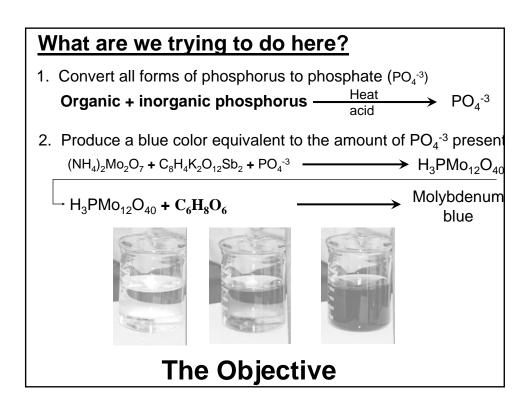



Entering Regr	ession Data int	to Sharp EL-	Calibration Data mg/L P Abs. 0 0.040
520L Set Mode to "2": [MODE 2		0.1 0.075 0.2 0.280 0.4 0.430
Clear the registers:	2nd F DEL		0.5 0.480 0.8 0.800 1.0 0.980
Enter 1st data pair:	0 STO	• 0 4 M +	n=1
Enter 2nd data pair:	• 1 STO	• 0 7 5 M	[+ n=2
Enter 3rd data pair:	• 2 STO	• 2 8 M +	n=3
Enter 4th data pair:	• 4 STO	• 4 3 M +	n=4
Enter 5th data pair:	• 5 STO	• 4 8 M +	n=5
Enter 6th data pair:	• 8 STO	• 8 0 M +	n=6
Enter 7th data pair:	1 STO	• 9 8 M +	n=7









Sample handling considerations

- \Rightarrow Refrigerate at 4°C; preserve w/ H₂SO₄ to pH < 2
- \Rightarrow Holding time = 28 days (not an issue for WWTPs)
- *** Collect sufficient sample to allow re-testing if necessary ***

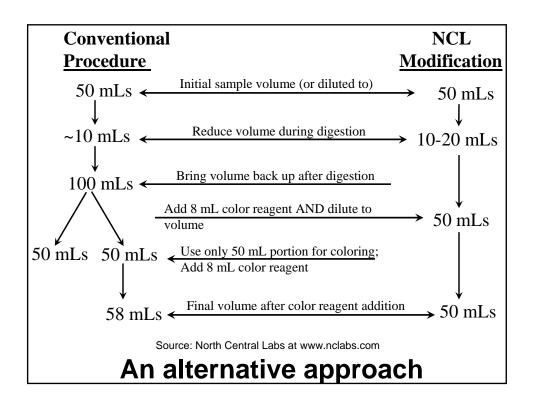
Critical reagent requirements

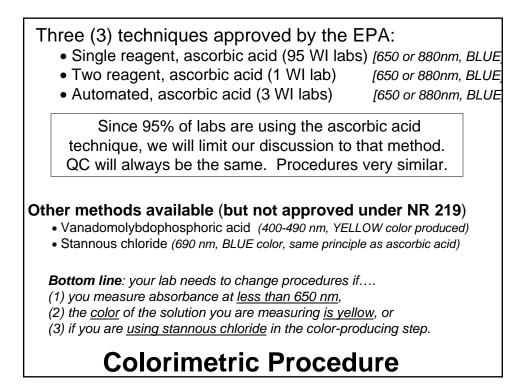
- ⇒ Dry potassium dihydrogen phosphate (KH₂PO₄) at 105°C for \ge 1 hour before weighing (*better yet...purchase standards*).
- \Rightarrow Prepare **ascorbic acid** (last addition to the combined color reagent) fresh weekly, store 4°C.
- \Rightarrow The combined solution should be mixed well after each solution addition.
- \Rightarrow **Combined color reagent** stable for only 4 hours. Warm all solutions; mix after each.
- \Rightarrow Wait \ge 8 mins. After addition; read samples within 30 mins.

Sample and Reagent Handling

₽ 50 mL sample.

- +1 drop phenolphthalein; if pink, acidify with 30% H_2SO_4
- Add 1 ml of 11 N H₂SO₄
- Add 0.4 g ammonium (or 0.5 g potassium) persulfate.


Hotplate Digestion


- Boil samples 30-40 mins. or until a final volume of 10 mL (whichever comes first)
- in no case should samples be boiled dry

Autoclave Digestion

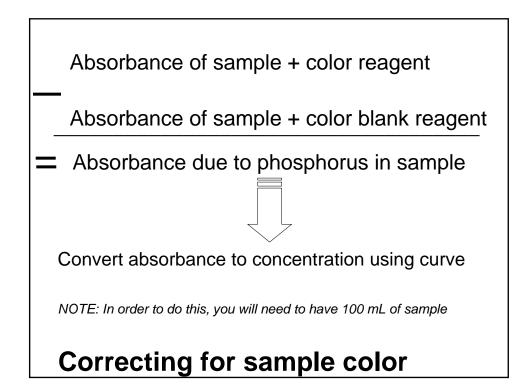
- Autoclave for 30 minutes in an autoclave or pressure cooker
- Set the conditions for 15-20 psi. (98-137 kPa)
- Samples are not boiled dry
- Cool samples, standards, and blanks.
- +1 drop phenolphthalein. Neutralize w/ 1N NaOH 'til faint pink.
- Solute to 100 ml, but don't filter.

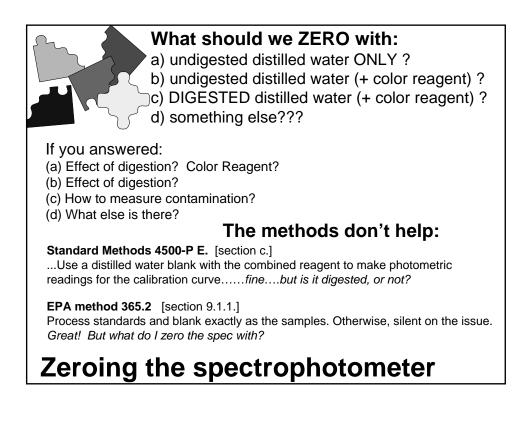
Phosphorus Digestion

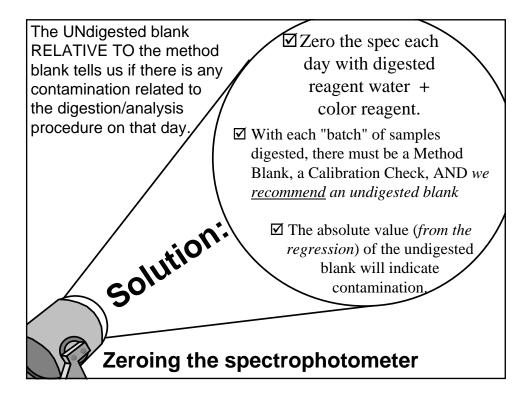
- Some plants develop seasonal color due to algae, etc.
- This color (or turbidity) may register background absorbance
- ...which amounts to high bias on phosphorus analysis
- Optimally, subtract "background" from true sample absorbance.
- Requires the measurement of absorbance from a "color blank".

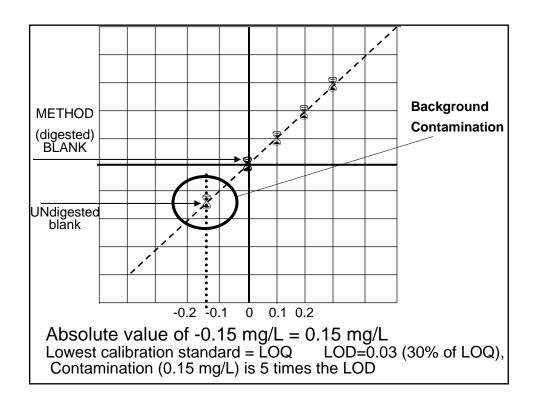
How do we correct for bias due to sample color/turbidity?

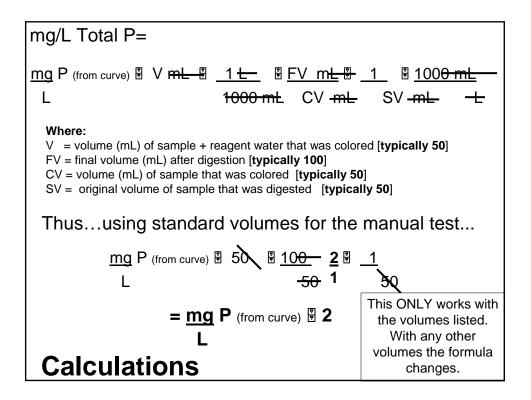
Dealing with natural sample color

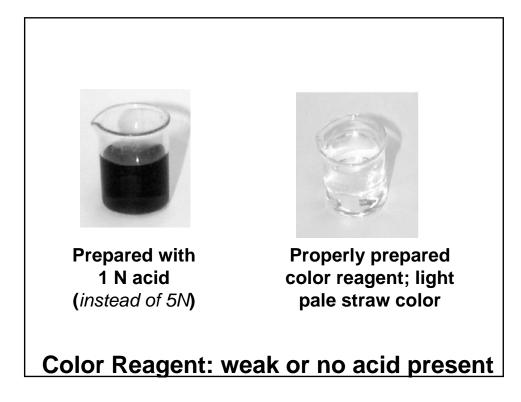

 Potassium antimonyl tartrate reagent: Dissolve 1.3715 g K(SbO)C₄H₄₀. 1/2H₂0 in 400 ml reagent water in a 500 ml volumetric flask. Dilute to volume. Store in a glass-stoppered bottle. • Ammonium molybdate reagent: Dissolve 20 g $(NH_4)_6Mo_70_{24} \cdot 4H_20$ in 500 ml reagent water. Store in a glass-stoppered bottle. • Sulfuric acid, 5N: Dilute 70 ml conc. H₂SO₄ to 500 ml with reagent water. ***** These first three reagents are typically purchased commercially ***** • Ascorbic acid, 0.01M: Dissolve 1.76 g ascorbic acid in 100 ml reagent water. Store at 4°C. Discard after one week. Combined Color Reagent (100 mLs) Color Blank Reagent (100 mLs) _____ 35 ml reagent water

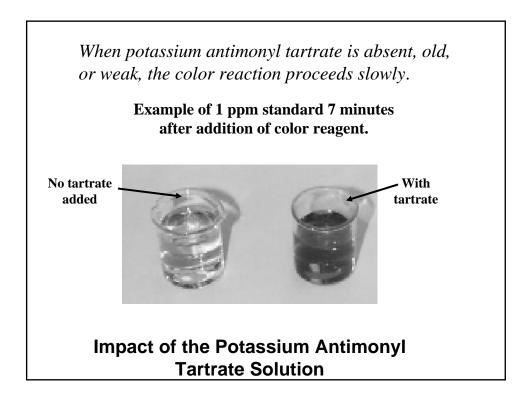

50 ml 5N sulfuric acid, 5 ml potassium antimonyl tartrate, 15 ml ammonium molybdate, and 30 ml ascorbic acid


- 50 ml 5N sulfuric acid, and


15 ml ammonium molybdate


Preparing color reagent





Problem	Possible Cause	Suggested Corrective Action
Standards / samples don't turn blue	Missing or bad ascorbic acid	Prepare fresh ascorbic acid & new combined color reagent
Samples yellow after digestion; but not standards	Excessive organic matter; oxidation of iron in sample	Use smaller sample volume; if iron: treat samples and standards with sodium bisulfite (EPA 365.3-3)
Mixed color reagent is dark yellow	Ascorbic acid may be bad	Prepare fresh ascorbic acid & new combined color reagent
All samples, standards and blanks turn blue after color reagent is added	Phosphorus contamination	Clean all glassware with dilute HCl; prepare all new reagents
Troubleshooting		

Symptom	Possible Cause	Suggested Corrective Action
Standards turn yellow, not blue.	Bad or old ascorbic acid.	Prepare fresh ascorbic acid & re-test.
Standards & blank all turn blue.	No acid added to combined color reagent or gross contamination	Prepare fresh color reagent; wash all glassware with fresh 10% HCl.
Standards turn blue then fade	Wrong acid concentration or bad antimony solution.	Check acid strength; check post digestion pH adjustment; prepare fresh color reagent.
Some Common Phosphorus Problems		

Symptom	Possible Cause	Suggested Corrective Action
Absorbances seem low or weak color intensity	Excess persulfate present after digestion	Make sure using proper amount of persulfate; heat/cook down longer.
Combined color reagent is dark yellow.	Ascorbic acid is bad.	Prepare fresh combined color reagent using fresh ascorbic acid solution
Neither standards nor samples turn blue.	Bad color reagent.	Check expiration dates, discard old solutions and prepare fresh color reagent.
Other Phosphorus Problems		

Parameter	Phosphorus	
# Standards	3 or more	
SM says:	6 + blank	
Aprox. LOD	0.01-0.02 mg/L	
Low std/LOQ	~ 0.05 - 0.1 mg/L	
Linear range	~0.1- 1.3 mg/L*	
High Standard	0.8 - 1.0 mg/L	
Suggested range	0, 0.1, 0.2, 0.4, 0.6, 0.8, 1	
* using a 1.0 cm cuvette. Range can be adjusted w/ different cell path lengths		
Calibration Range		

Interm	ted Way to I ediate Stocl phorus Stan	k Total
mL Stock Std. Diluted to 1000 mL 5	Conc. Stock Std to use (ppm) 1000	Final Conc. Stock Standard (ppm) 5
50	1000	50

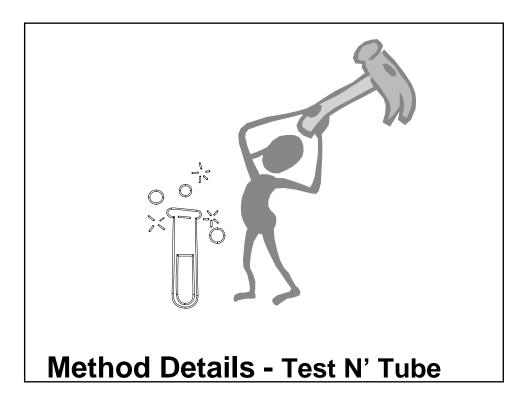
Suggested Way to Prepare Working Total Phosphorus Standards

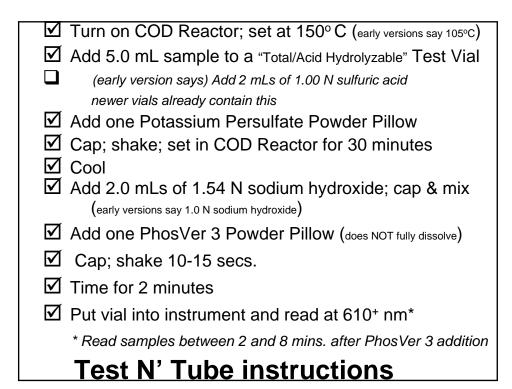
mL Stock Std. Diluted to 500 mL	Conc. Stock Std to use	Final Conc. Working Std.
10	5	0.1
20	5	0.2
6	50	0.6
8	50	0.8
10	50	1.0
Note: <i>Always</i> use class A volumetric pipets or air displacement pipets (Ependroff, Rainin, Gilson, etc.) to prepare standards.		

More Common Problems

Contamination!

- Wash glassware well, using a non-phosphate detergent
- THROW OUT your Alconox (~8.7% phosphorus)
- Rinse with dilute (1-10%) hydrochloric acid
- Never re-use HCl solution to wash glassware
 Used acid soon becomes contaminated → contaminates all of your glassware.
- Even new glassware needs to be washed
- DO NOT touch inside glassware with bare hands!
- DO NOT smoke or use air fresheners in the laboratory.
- · Cover samples if you use autoclave for digestion
- Segregate glassware for TP (but still rotate glassware)


Combined (color) reagent


- Make your Combined Reagent fresh daily
- It should be a light straw or light yellow color.

Sample pH Not at proper pH prior to adding the Combined Reagent.

- ✓ <u>Always</u> do hotplate digestions in a good laboratory fume hood.
- \checkmark <u>Always</u> prepare acids and bases in a fume hood.
- ✓ <u>Always</u> use a fume hood when rinsing glassware with 10% HCl.
- ✓ <u>Never</u> substitute a household range hood for a laboratory fume hood.
- ✓ <u>Always</u> were safety glasses and gloves when rinsing glassware with HCl, and...
- ✓ <u>Never</u> mouth pipet.

Safety Tips for Total Phosphorus Testing.

Metals (a number of them)	 But at levels you would not routinely encounter in wastewater
Arsenates -	At any level. But these should be quite rare
Color/ High Turbidity	 Inconsistent results. Acid in powder pillow may dissolve some of the suspended particles. Also, variable desorption of orthophosphate from the particles
Highly buffered samples or pH extremes -	May exceed buffering capacity of the reagents and require pretreatment.

Test N' Tube interferences

Keep in mind:

A. The upper range of calibration (~ 1.0ppm)

- B. The background concentration of your effluent (~0.5)
- C. Spike concentration must be 1-5x background (0.5 to 2.5ppm) Maneuvering room is A - B = 0.5 ppm

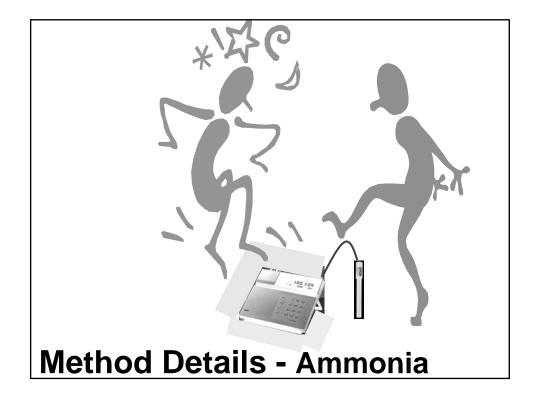
...or else less than 5 mLs of sample must be used

Suggestions:

- Spike with 0.5 mLs of a 5.0 mg/L Phosphorus solution (=0.5ppm)
- Use 4.5 mLs of sample (or less if background is > 0.5 ppm)
- Use same volume of sample in spiked and unspiked analysis
- Use reagent water as necessary to make total volume 5.0 mLs

Test N' Tube spiking

ADVANTAGES


- ☑ Simple
- Quick
- \blacksquare Don't have to deal with reagents
- ☑ No babysitting (won't boil dry)

DISADVANTAGES

- Problematic for colored or turbid samples
- ☑ Not suited for highly buffered samples (high alkalinity)
- Preparing matrix spikes is difficult (limited sample volume)

Consider purchasing an autopipettor...it will simplify life

Test N' Tube summary

- 1. Distillation?????????
 - 2. Calibrate
 - 3. Determine sample concentration and millivolts
 - 4. Convert millivolts to concentration
- 5. Calculate QC sample results
- 6. Evaluate QC data
- 7. Perform any necessary corrective action
- 8. Re-analyze any samples/QC as needed
- 9. Qualify data as needed

Key steps

Can I let the ISE meter software calculate my ammonia concentrations?

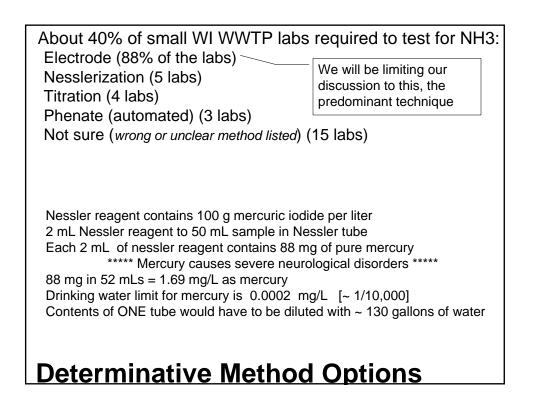
- Yes.... providing you:
 - Measure and record the mV readings on samples and standards
 - Your standards are a decade apart (0.2, 2.0., 20)
 - You determine the slope between each standard
 - The slope between each standard must be within the -54 to -60 mV range

WI NR 219: distill samples...,or prove that [it] is not needed. State Laboratory of Hygiene & DNR conducted a study:

- Municipal wastewater effluent
- Tested ammonia by ion selective electrode
- Comparison of values with and without distillation
- Conclusion: distillation not required
- Result: SLH granted a variance which extends to WWTPs

Variance limited to: domestic municipal effluent Distillation, or a similar study, required if:

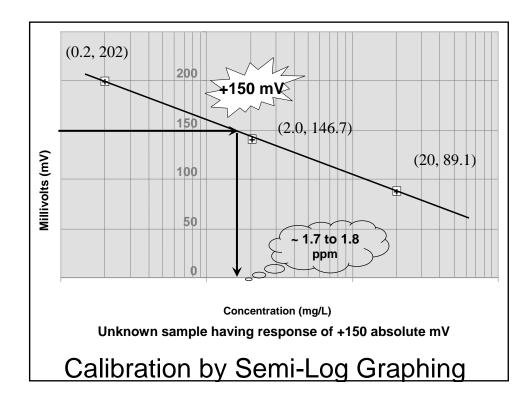
- receiving industrial or pre-treatment wastes,
- Dairy or paper mill effluents (unique analytical matrix)
- if dealing with anything other than domestic municipal WW effluent,

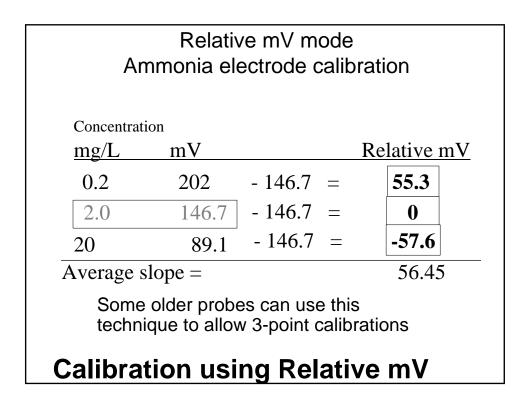

Keep a copy of the SLH study on file Obtain copies from:

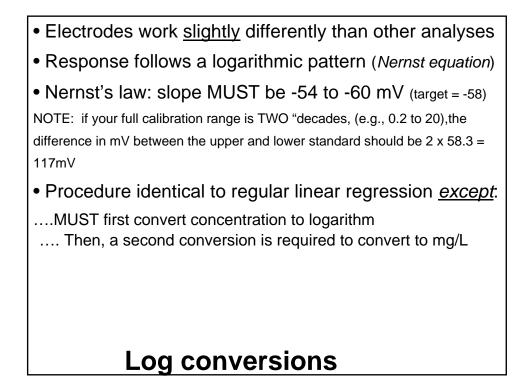
Laboratory Certification Program

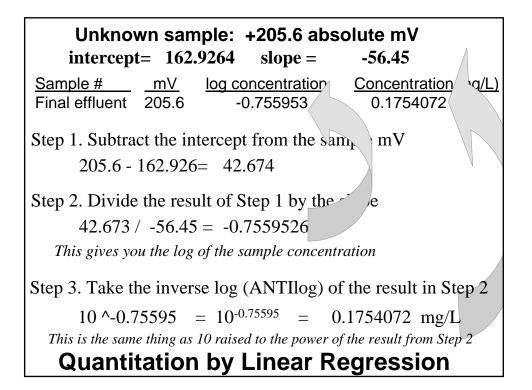
• the State Lab of Hygiene

"Evaluation of Preliminary Distillation Prior to Ion Selective Electrode Determination of Ammonia in Municipal Wastewater Effluent"

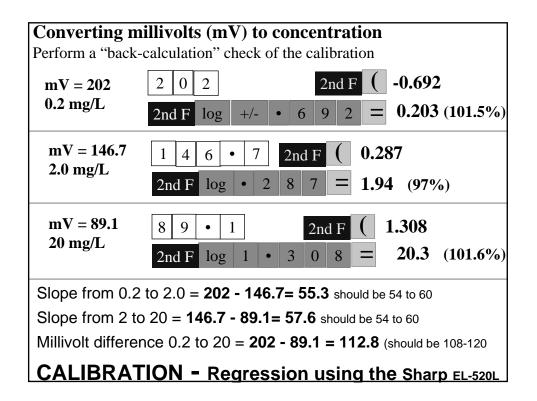

To Distill or NOT to distill...




Make sure meter is warmed up!


- 1. Pour out 50 or 100 mL of sample.
- 2. Place the electrode in the beaker.
- 3. Turn on the magnetic stirrer.
- 4. Set the meter to begin reading
- 5. Add 1 ml of buffer solution (typically 10 M NaOH). (SM Buffer solution is based on 1 mL per 100 mLs of sample) (Orion buffer is based on 2 mLs per 100 mLs of sample) (Orion buffer stays blue if the sample pH is > 11)
- 6. Read millivolts and concentration (if using onboard software).
- Keep the electrode at an angle to minimize air bubbles
- Stir at the same speed for standards and samples.
- Prevent heating the solution; insulate between beaker & stirrer
- Do not add NaOH before immersing electrode --ammonia is in gaseous form at this pH and will be lost!

Ammonia ISE Procedure



Calculator steps	Cal	ibra	tion Data
	mg/	Ľ	mV
Set Mode to "2": MODE 2	0.	2	202
	2.	0	146.7
Clear the registers: 2nd F DEL	20		89.1
Enter 1st data pair: log 0 • 2 STO	2	0	2 M +
Enter 2nd data pair:log2STO14	6	•	7 M +
Enter 3rd data pair:log20STO8	9	•	1 M +
Obtain the calibration evaluation inform ✓ Get the Correlation coefficient: RCL ÷			99993
✓ Get the Slope RCL)	т — b= ·		
	a =	162	2.9264
CALIBRATION - Entering Regression Data int	to Ca	alcu	lator

Parameter	Ammonia
No. of standards	3
*** SM says:	5 ***
Aprox. LOD	0.05-0.1 mg/L
Low std/LOQ	~ 0.2 mg/L
Linear range	0.03-2000 mg/L
High Standard	20 - 50 mg/L
Suggested range	0.2, 2, 20 mg/L
NOTE: Calibration ranges for	ammonia may change with the season

Calibration Range

Suggested Way to Prepare Intermediate Stock Ammonia Standards

mL Stock Std Diluted to 500 mL	Conc. Stock Std. to Use (ppm)	Final Conc. Working Std. (ppm)
5	1000	10
50	1000	100
Note: <i>Always</i> use cla prepare standards	ss A volumetric pipets	and flasks to

•••	sted Way to Ammonia S	-
mL Stock Std Diluted to 500 mL	Conc. Stock Std. to Use (ppm)	Final Conc. Working Std. (ppm)
10	10	0.2
10	100	2
10	1000	20

Probe, Probe, Probe!

Probes do NOT last forever!

- ✓ Average life expectancy is 2 years or less.
- ✓ If your probe is > 2 yrs old, consider getting a new one

DO NOT store probes in lab reagent water!

- ✓ Your probe will be deader than the proverbial doornail.
- ✓ DO store the probe in 1000 ppm NH_4CI solution

AVOID calibrating below about 0.2 mg/L!
✓It takes longer to stabilize than meter pre-set timer.
✓Result will often be a poor slope or bias at the low end

Common problems - NH₃

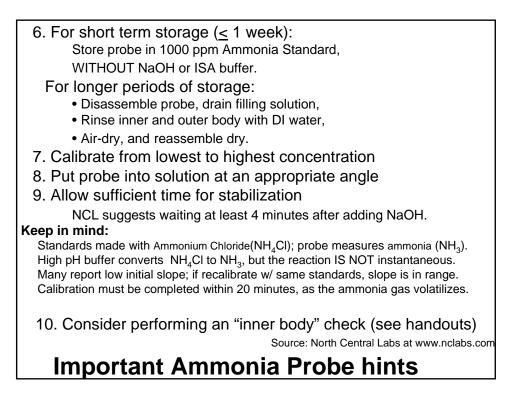
Probe, Probe, Probe!

If you get negative mVs for any standards (\leq 20 ppm)...

- ...it's a sure sign that the probe/membrane is deteriorating
- ✓ Change membrane monthly or as needed
- ✓ You will ONLY see this if you calibrate "manually"

Be wary of temperature changes!

- ✓1-2% error per degree C change.
- ✓ Samples & standards must be at the same temperature


Conditioning required?

- ✓ If consistently have problems achieving valid calibration
- \checkmark try "shocking" the probe with a high (~ 10 ppm) standard

Common problems - NH₃

- 1. After receiving a new Ammonia probe, condition it in accordance with the manufacturers instructions.
- 2. With a new probe, you get new membrane filling solution. Throw old membranes and filling solution away...
 - membranes develop pinholes;
 - filling solution suffers from bacterial buildup.
- 3. Change the membrane and filling solution every 2-4 weeks.
- 4. Allow AT LEAST 2 hours stabilization time after changing the membrane and/or filling solution. *Overnight is better.*
- 5. For Orion probes: After filling the outer body, hold it at an angle and tap gently to get rid of any air bubbles.
 - After assembling the probe, GENTLY pull on the cable at the top of the probe to get rid of trapped air bubbles.
 - One major cause of unstable readings is trapped air bubbles at the bottom of the probe!

Source: North Central Labs at www.nclabs.com

Symptoms: low slopes, erratic readings, error messages during calibrations, and incorrect results.

First: run an "inner-body check".

- This test will tell whether the sensor system itself is operating correctly.
- Dealer/Manufacturer will ask for results of this check before they will consider an in-warranty replacement.
- Even if the probe is older (outside warranty), this simple test will save you a lot of headaches.

If the probe fails this test, it will not work regardless of how many times you recalibrate or remake your standards.

Note: If probe has been dry for more than a few days,

- disassemble the probe
- soak the inner-body in regular pH 7.00 buffer overnight.

If you neglect to do this the probe will probably fail the test regardless of whether it is actually good or not!

Source: North Central Labs at www.nclabs.com

Ammonia probe problems

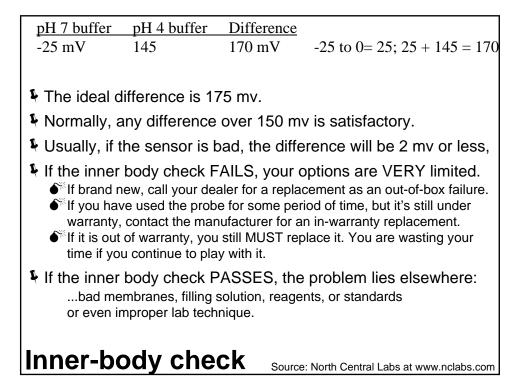
You will need two reagents to run this test: pH 7.00 buffer with 0.1 M NaCl (Sodium Chloride) ~ \$10.00/500 ml pH 4.00 buffer with 0.1 M NaCl (Sodium Chloride) ~ \$10.00/500 ml

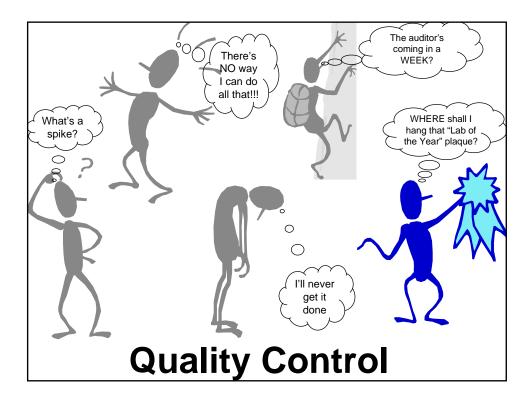
- 1. Pour 50-100 ml of each into separate beakers; label each beaker.
- **2.** Disassemble your Ammonia probe. *Be careful--the glass at the bottom of the inner body is very fragile. If you break it, you WILL be buying a new probe.*
- **3.** Connect probe to meter and select millivolt (mv) direct-read mode.
- **4.** Place the beaker containing the pH 7 buffer with NaCl on a stir plate, add a 1" stir bar and stir at slow to medium speed.
- **5.** Clamp the inner body into a probe holder and immerse the probe in the beaker, being careful to NOT lower it so far that it is hit by the stir bar.
- 6. The reading should stabilize within two minutes.

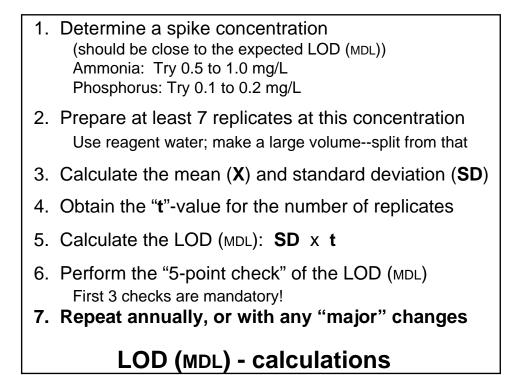
A "stable" reading is a reading which drifts 0.1 mv/minute or less.

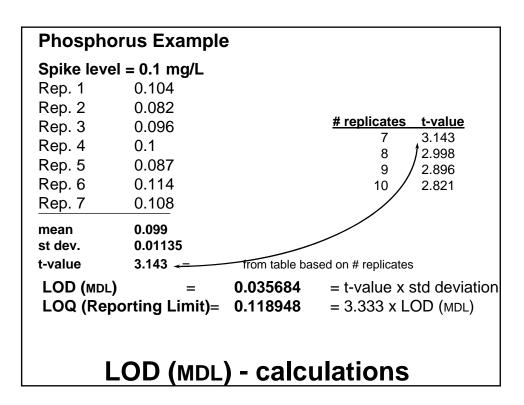
Record this reading paying attention to the minus sign (-), if present.

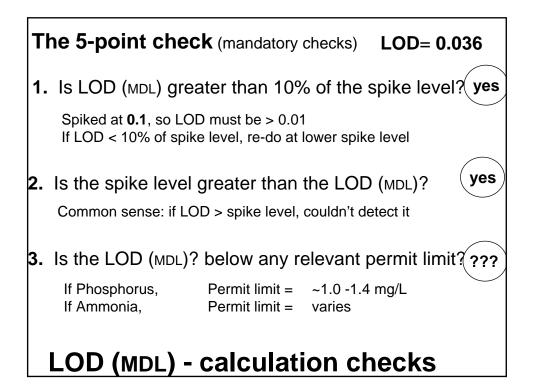
7. Remove inner body from solution, rinse with DI water

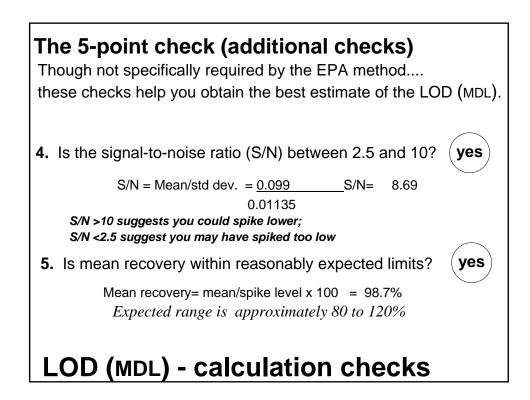

8. Repeat steps 4-6 above using the pH 4.00 buffer with NaCl.


9. Calculate the difference, in millivolts, of the two readings.


Remember to take any minus signs into account.


Inner-body check


Source: North Central Labs at www.nclabs.com



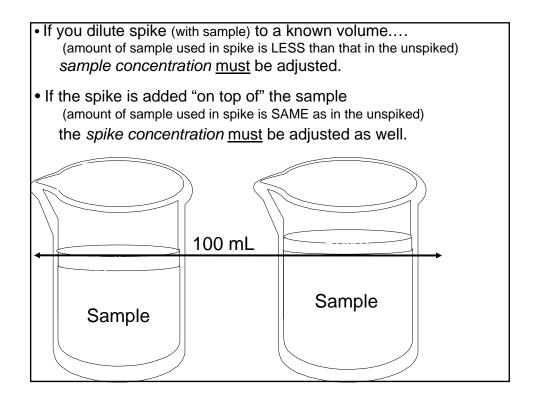
Matrix Spikes

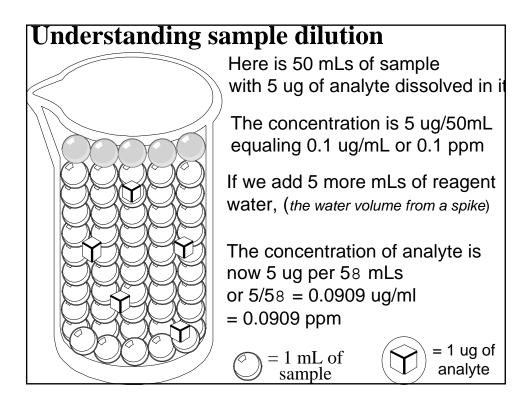
1. Consider the upper calibration range!

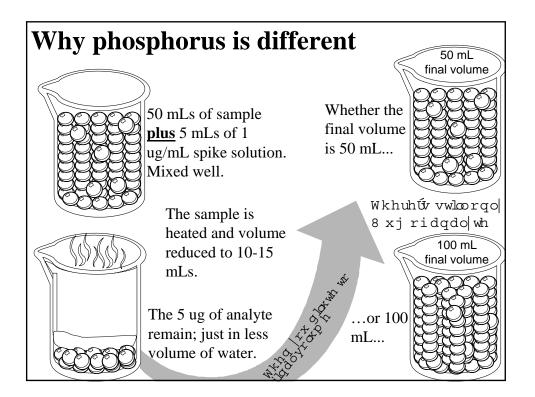
If you calibrate to 1 ppm... your effluent is about 0.25 ppm.... and you spike at 1.0 ppm.....will exceed the calibration range.

2. Spike at 1 to 5 times the level in the sample

If effluent averages 1 ppm, spike between 1 and 5 ppm


- If you spike at less than 1x, risk the ability to recover it.
- As spike increases beyond 5X, TOO easy to recover.


3. Limit additional volume to <10% of sample


(i.e., 0.5 mL standard to 5 mL with sample)

• The spike faces less matrix than in the unspiked sample

Matrix Spikes: How much should you spike?

The goal of a matrix spike is to provide us with information regarding how accurate our sample analysis results are.

If spike recovery is only 50%, then the potential exists that the true concentration of the target parameter is as much as twice the measured concentration.

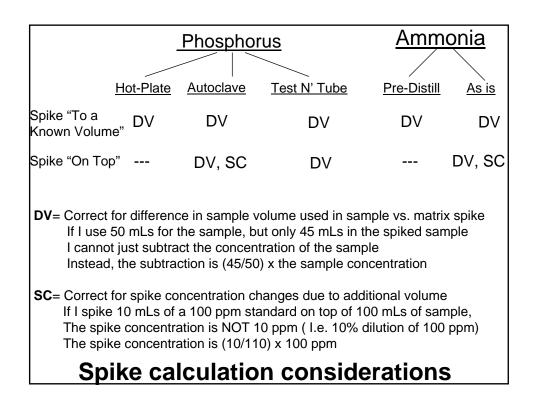
Dilution - How much is too much?

- The bottom line is that you want to use as much sample for the matrix spike as you did for the sample itself.
- References vary on how much dilution is TOO much.
- Our guidance has been to limit dilution to 10% or LESS.
- If dilution from the spike is kept to 1% or less... direct subtraction of unspiked sample is allowed.

Matrix Spikes

Calculation of % Recovery

% Recovery = Spiked Sample – Unspiked sample X 100 Amount of spike added


seems simple enough.....BUT.... it really works *only* if dilution from the spike is kept to 1% or less

Results will vary depending on whether you

- simply add the spike on top of the sample, or you
- add the spike first & dilute to a fixed volume with sample, and
- is further compounded by whether or not you are digesting
- ...and even depends on the type of digestion involved

Alternative: Employ a "mass-based" calculation approach

Matrix Spikes-Recovery

Calculation of % Recovery

% Recovery = Spiked Sample – Unspiked sample X 100

Amount of spike added

Wastewater Lab operator/analyst "Joe" measures out 50 mLs of sample, and places the beaker on a stir plate. He then adds 1 mL of buffer solution. After stabilizing, the meter reads 2.0 mg/L ammonia.

Unspiked sample 2.0 ug/mL Unspiked Sample Volume 50 mL

Joe" then measures out another 50 mLs of sample to prepare a mnatrix spike. To the 50 mLs of sample he adds 5 mL of a 25 mg/L ammonia standard. This beaker is then placed on the stir plate. He then adds 1 mL of buffer solution. After stabilizing, the meter reads 4.25 mg/L ammonia.

Spike volume 5 mL Spike Conc. 25 ug/mL Spiked sample Total volume 4.25 ug/mL 55 mL

What's the % recovery?

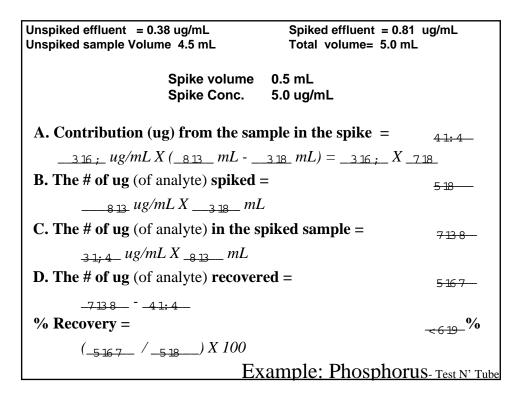
Spike Recovery Exercise

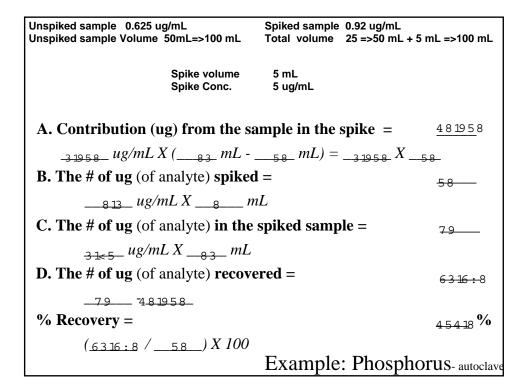
A. Determine the contribution (ug) from the sample in the spike

Subtract the mLs of the spike from the total mLs of sample + spike
Multiply the answer from A.1 (above) by the sample concentration

B. Determine the # of ug (of analyte) spiked
Multiply the concentration of the solution used to spike by the # mLs spiked
C. Determine the # of ug (of analyte) in the spiked sample
Multiply the spiked sample concentration by the # mLs of this sample
D. Determine the # of ug (of analyte) recovered
Subtract "A" from "C"
% Recovery = Divide "D" by "B" and multiply by 100

Calculating %Recovery by mass


Unspiked sample Unspiked Sample Volume	2.0 ug/mL 50 mL	Spiked sample Total volume	4.25 ug/mL 55 mL
			00 1112
-	ke volume		
Spi	ke Conc. 25	b ug/mL	
A. Contribution (ug) fr	om the samp	le in the spike =	100
2.0 ug/mL X (55	mL - 5 mL) =	2.0 X 50	
B. The # of ug (of analy	te) <u>spiked</u> =		125
25 ug/mL X 5 mL			
C. The # of ug (of analy	te) in the spi	ked sample =	233.75
4.25 ug/mL X 55	mL		
D. The # of ug (of analy	te) <u>recovered</u>	<u>l</u> =	133.75
= C - A = 233	.75 - 100		
% Recovery =			107.0%
= D / B = (133.2)	75 / 125) X 10	00	
	•	•	


Example: Ammonia- adding "on top"

Matrix Spikes:	Matrix Spikes: Ammonia example- adding "on top"			
Unspiked sample Unspiked Sample Volume	-	Spiked sample Total volume	4.25 ug/mL 55 mL	
	ike volume 5 ike Conc. 25			
A. Correct the conce	ntration in th	e unspiked sample	= 1.82	
2.0 ug/mL X (50/5.	5) $mL = 2.0$	x 0.91		
B. Correct the spike	concentration	=	2.27	
25 ug/mL X (.	5/55) mL = .0	91		
C. Calculate recover	ed concentrat	ion =	2.43	
$=(4.25 \ ug/mL)$	- 1.82 ug/mL			
% Recovery =	a a a a a a a a a a a a a a a a a a a		107.0%	
$= (C / B) \times 100$	=(2.43/2.2)	27) X 100		
	(,,	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
Conventional calculation- "adding on top"				

Unspiked sample Unspiked Sample Vol	3.263 ug/mL ume 100 mL	Spiked sample 5 Spiked sample volum	-
	Spike volume 2 Spike Conc. 2		
A. Contribution (u	g) from the samj	ple in the spike =	<u>59413</u> 7
<u>61596</u> ug/mL X	C (<u>433</u> mL	<u>53</u> mL) = <u>61596</u> X <u>;</u>	3
B. The # of ug (of a	nalyte) spiked =		733
<u>53</u> _ug/n	nL X _ <u>53</u> mL		
C. The # of ug (of a	nalyte) in the spi	ked sample =	85918
<u>_8 15 9 8</u> ug/ml	$LX_{433}mL$		
D. The # of ug (of a	nalyte) recovered	d =	59817 9
<u>81598</u> - <u>59</u>	4 13 7		
% Recovery =			9917 %
(<u>598179</u> /	733_) X 100		
	Exampl	e: Ammonia- dilute t	o known volume

Unspiked sample .246 X 25 = 6.15ug/mL Unspiked sample Volume 2mL=>50 mL	Spiked sample .346x 2 Total volume 2 mL +	-
Spike volume Spike Conc.		
A. Contribution (ug) from the sam 31579 9148 ug/mLX (33 mL		4516
B. The # of ug (of analyte) spiked =	:	
$\{8 13}$ ug/mL X $\4$ mL		
C. The # of ug (of analyte) in the sp	oiked sample =	<u>4:16</u>
; ¹⁹⁸ 3 16 7 9 ug/mL X83 mL		
D. The # of ug (of analyte) recover	ed =	8 13
<u>4 ; 16</u> ⁻ <u>4 5 16</u>		
% Recovery =		433_%
(8 /8) X 100	Example: Phospho	rus - hotplate

Replicates

Evaluating Replicates Based on <u>absolute</u> difference (Range) or <u>Relative</u> <u>percent</u> difference (RPD) between duplicates	Example Sample = 2.2 Replicate =1.8
Range expressed in same units as valuesRange= Absolute Difference = Larger value - smaller value	= 2.2 - 1.8 = 0.4
$\begin{array}{c} \textbf{RPD} & \textbf{R} \\ expressed as \% & \textbf{R} \\ \textbf{RPD} &= \frac{\textbf{Range}}{\textbf{Mean of the replicates}} x \ 100 & \textbf{RPD} \\ \end{array}$	Range / Mean ange = 0.4 Iean = $(2.2 + 1.8)/2$ = 2.0 $(0.4/2.0) \ge 100$ 20%
Replicates - measuring p	recision

Sample	Replicate	Range	RPD
200	216	16	7.7%
250	270	20	7.7%
300	324	24	7.7%
350	378	28	7.7%
400	432	32 🔸	7.7%

As concentration increases, the absolute range can increase accordingly with NO CHANGE in RPD

For a given range, as concentration increases, RPD decreases

For a given range, as concentration **decreases**, RPD increases

When might this be of use?

If your system is susceptible to high I & I If your system exhibits high variability in influent loading It might be a good idea to use RPD for raw; range for final

Is RPD for you?

Matrix spike & RPD Control limits

- 1. Test the data for and eliminate outliers before proceeding.
- 2. Calculate the mean and standard deviation of the data.
- 3. Warning limits = Mean + 2 standard deviations

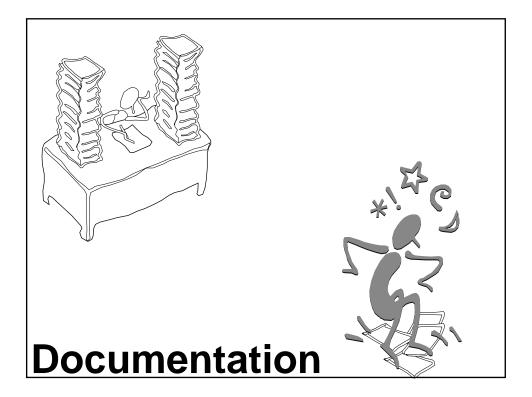
4. Control limits = Mean + 3 standard deviations

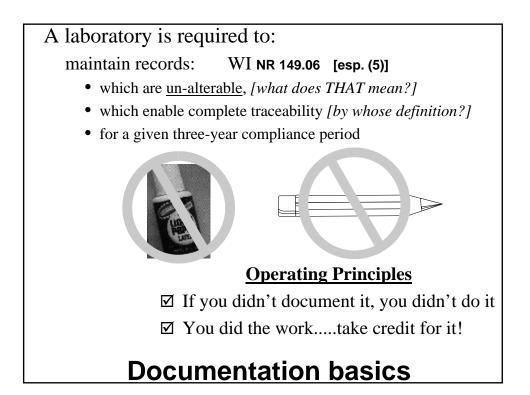
NOTE: RPD is a 1-tailed test, so only Mean +

Range Control limits

1. Test the data for and eliminate outliers before proceeding.

- 2. Calculate the mean of the data.
- 3. Warning limits = 2.51 x Mean
- 4. Control limits = 3.27 x Mean


Calculating control limits


	Phosphorus		
Calibration	When check fails at least quarterly At least 3 stds + blank if LSR, r <u>></u> 0.995		
Calibration Check	each day of analysis 90-110% of true value		
Blank	each day of analysis less than the LOD		
LOD	determine initially repeat annually		
	QC Requirement summary		

	Phosphorus		
Matrix Spikes	1 per 20 samples per matrix Calculate control limits Optional: 80-120% Check for outliers		
Replicates	1 per 20 samples per matrix Calculate control limits if RPD: < 20% Check for outliers		
Reference Samples	Pass at least 1 per yr		
Blind Standards	Analyze & pass 3 per yr 3-4 months apart if fail, analyze another		
QC F	QC Requirement summary II		

	<u>Ammonia</u>				
Calibration	Each analysis day				
	At least 3 stds				
	Slope 54-60 mV				
	if LSR, r <u>≥</u> 0.995				
Calibration	90-110% of true value				
Check	1 per 10 (if needed)				
Blank	each day of analysis				
less than the LOD					
LOD (MDL)	determine initially				
- ()	repeat annually				
QC Requirement (WI) summary					

Ammonia					
Matrix Spikes	1 per 20 samples per matrix Calculate control limits Optional: 80-120% Check for outliers				
Replicates	1 per 20 samples per matrix Calculate control limits if RPD: < 20% Check for outliers				
Reference Samples	Pass at least 1 per vr				
BlindAnalyze & pass 3 per yrStandards3-4 months apartif fail, analyze another					
QC Requirement (WI) summary II					

Tables are better than lots of text!

 In the old "a picture is worth 1000 words" concept

 Tables FORCE you to be brief

3 rules for building a QA Plan by tables

What am I <u>evaluating</u>? (parameter) How do I evaluate it (criteria)

What if it doesn't meet specifications? (Corrective Action)

Setting up an effective QA Plan

Evaluating?	<u>Criteria</u>	Corrective Action
Method Blank	< LOD	 Identify contamination source Correct Problem Qualify data
Phosphorus Calibration check Known standard	90-110% of true value	 Replace standards/reagents If highcontamination? Re-do calibration Reanalyze/ qualify samples
Ammonia Calibration slope	$-54 \text{ to } -60 \text{ mV}$ $\text{target} = -58 \text{ mV}$ $(\text{at } 20^{\circ} \text{ C})$	 1) Enough time to stabilize? 2) Low standard too low? 3) Change membrane 4) Perform inner body check
Matrix Spike	Within Control Limit(s)	 Correct calculation? Spike 1-5x sample? Spike another sample Qualify data
Replicates	Within Control Limit(s)	 Homogeneous sample? Analyze a third time Review control limits Qualify data

- Solution (or distillation information) copy of WSLH study!!
- ✓ Calibration data (be able to relate to analyses)

If asked to see data from August 1997...can you show the calibration data?

- ALL sample-related information and raw data
- Science Clearly show any initial dilutions
- Matrix spike preparation and calculations
- Section Calculations and data associated with control limits
- ✓ Control limits in use over time (most recent 3 years)
- *K* Any Corrective Action (including maintenance)
- Solution Standard performance (3 yrs) + any corrective action

Documentation

Facility Name: Tree City, WI	111222333	
<u>X</u> Ammonia	x_Total Phosphorus	Benchsheet
Sample Location (specific) Raw see schematic Final see schematic Other		(flow weighted)
	Distillation Date: N/A Digestion Date : 5/2/00 Analysis Date: 5/2/00	Analyst: <u>RGM</u>
Calibration Date: Phosphorus	s: 4/3/00 Ammonia 5	5/2/00
General Benchs	sheet Info	

For all calibrations		r consistency	or significa	nt changes)				
Intercept = -0.0				J,				
For linear regress	`		,					
correlation coefficie		72(should	d be <u>></u> 0.99	5)				
Concentration mg	/L = [<u>sample abso</u>	orbance - inte	rcept]					
		pe						
For ALL calibration	s→	For linear regressio	ns					
Standard								
	Concentration 880 nm (mg? or mg/L?) LOD=							
(mq? (mq/L?)) Blank 0 0 0.002 0.025								
1. 0.1								
2. 0.2								
3. 0.4 0.339 0.398 99.6%								
0.5	0.428	0.502	100%					
0.8	0.682	0.799	100%	_				
				_				
¹ obtained by solving for concentration using the absorbance of the standards								
Phosphorus Benchsheet: Calibration								

True=	¹ Known Standard 0.6 mg/L	Influent (Raw)	Effluent (Final)	Replicate (of)	Matrix Spike # (of <u>Final</u>)	
Sample Volume mLs	50	0.5 [@]	25	25	0.5 [@]	
Absorbance						
(after coloring)	0.531	0.037	0.486	0.418	0.234	
Absorbance						
(before coloring)						
Net Absorbance	0.531	0.037	0.486	0.418	0.234	
Dilution Factor (DF)	1	$\frac{50}{5} \times \frac{50}{5} = 100$	50/25 =2	50/25= 2	$\frac{50}{5} \times \frac{50}{5} = 100$	
* mg/L (from calibration)	0.622	0.045	0.570	0.490	0.276	
** Final mg/L as P	103.8%	4.50	1.14	0.98 Range = 0.16	% Recovery = 115.5%	
@= Raw sample of that dilutio	e: Dilute on and m	d 5 mLs ade up	s to 50 n to 50 m	RPD = 15.1% nLs initially, th Ls for digestio	en took 5 mLs n	
#= Matrix spike = 2 mLs of a 5ppm standard (Lot #0112437) added to the 50 mLs of sample prepared as with the unspiked raw sample 0.276 x 50 = 13.8 ug						
** Final concentration =	<u>mg</u> from ca L	alibration X	DF		- 0.045 x 50 = 2.25 ug	
					11.55 ug	
DF = <u>Initial dilution final mLs</u> Initial dilution sample mLs	Ū	ed for sample	mLs co	lored for standards lored for sample	$\frac{11.55 \text{ ug}}{5 = 10 \text{ ug}} \text{X100= 115.59}$	
Phosphorus	Benc	chshee	<u>et: Da</u>	ata ^{2×}	5 = 10 ug	

* "decade" refers to a 10-fold change in concentration, e.g. 1 to 10 ppm Linear regressions - Intercept = 90.34 (should not be > LOD) correlation (r)= -0.99866 (should be ≥ 0.995) $\Delta_{0.2-20} = 109$ mV expect 108-120 $\Delta_{0.2-20} = 49.6$ mV expect 54-60 $\Delta_{2-20} = 59.4$ mV expect 54-60 $\Delta_{2-20} = 59.4$ mV expect 54-60 $\frac{5100}{1000}$ (mg/L) (mg/L) Blank (mV) (mg/L) (mg/L) Blank (mg/L) (mg/L) (100.241 = 1.742) 20 17.8 1.33 10 1.33 = 21.38 106.9%	Calibration by:	bration by: Internal (Direct Read): Linear regression: Relative millivolts: Semi-logarithmic paper:				_X		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Linear regressions - Intercept = 90.34 (should not be > LOD) correlation (r)= -0.99866 (should be ≥ 0.995)							
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	$\Delta_{0.2-2.0} = 49.6 \text{ mV}$ expect 54-60							
Blank 10 - 0.669 10 - 0.669 10 - 0.669 10 7 % 2.0 77.2 0.241 10 $^{0.241}$ = 1.742 87.1 % 20 17.8 1.33 10 $^{1.33}$ = 21.38 106.9%	Concentration (mV) concentration ¹ concentration ²							
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Blank							
	2							
Concentration = Inverse/antilog of [sample mV = intercept] slope	_							

	Influent (Raw)	Effluent (Final)	Replicate (of Raw @)	Matrix Spike (of Final#)			
Distilled? (Y/N)	Ν	N	N	N			
Sample Volume mLs	10	50	10	$45 \rightarrow 50$ with spike			
Dilution Factor (DF)	50/10 =5	1	50/10=5	1			
Millivolts (mV)	94.9	114	99.7	85.4			
* mg/L from calibration	10 ^{-0.084} =0.824	10 ^{-0.434} = 0.368	10 ^{-0.172} =0.673	10 ^{0.091} = 1.23			
** Final mg/L as NH_3	4.12	0.37	3.36 Range = 0.76 RPD = 20.3	% %Recovery=89.7%			
#= Matrix spike = 5 mLs of a 10ppm standard (Lot #Xb7A28) diluted to a final volume of 50 mLs with sample. 1.23 x 50 = 61.5 ug							
- 0.37 x 45 = 16.65 ug							
** Final concentration = mg/L from calibration X DF							
Dilution Factor (DF) =		for standards for sample		$\frac{14.85 \text{ ug}}{50 \text{ ug}}$ X100= 89.7%			
Ammonia Benchsheet: Data							

- $\ensuremath{\ensuremath{\square}}$ Reviewed background information
 - Ammonia
 - Phosphorus
- Discussed calibration concepts
- Reviewed the methods in detail
- ☑ Highlighted QA/QC requirements
- ☑ Provided resolutions to common problems
- Discussed what documentation is required
- Put it all together [your QA manual]

Summary

George Bowman Graham Anderson (608) 224-6278

Dr. Bill Sonzogni, Director State Laboratory of Hygiene 2601 Agriculture Drive Madison, WI 53718 **Rick Mealy** (608) 264-6006

(000) 204-0000

Wisconsin DNR PO Box 7921 Madison, WI 53707

State Lab web address: http://www.slh.wisc.edu/outreach/

DNR's LabCert homepage:

http://www.dnr.state.wi.us/org/es/science/lc/

For more information