

Disclaimer

Any reference to product or company names does not constitute endorsement by the Wisconsin State Laboratory of Hygiene, the University of Wisconsin, or the Department of Natural Resources.

Overview

- Why QC?
- What's in it for me?
- QC vs. QA ...what's the difference?
- General Components of a QA/QC Program
- Examples of QC
- Setting up an Effective QA Plan

Quality Contorl

Quality Control is all around us

You often don't notice it...

but it's constantly at the root of daily news stories....

... we can see it in the movies or...

...subtley make reference to it in coversation

From the movie Armageddon, listen as Steve Buscemi's character makes a witty reference to QC (or lack thereof):

Why QA/QC?

Fundamental concept applies far beyond laboratory

Would you buy a Ford Explorer with Firestone tires?take the family to a Milwaukee area Sizzler restaurant? Our apologies to Firestone and Sizzler...just trying to make a point here!

Common sense

"Checks and balances" is a universal concept. (aircraft) "To err" is human (double key entry)

Prove data valid mostly through documentation "He who has the best documentation wins."

Important to data user <u>and</u> the laboratory User wants to make correct decisions....and sleep at night! Laboratory wants to produce a good product....and pass audits!

What's in it for me?

 \Rightarrow Millions spent on plant upgrades based on lab data (Consider the plight of plant designed and built using inaccurate flow measurement data that is <u>later</u> determined to be undersized)

- \Rightarrow Needed to maintain lab certification/registration
- \Rightarrow Quality data required to show plant functioning properly
- \Rightarrow Policy and guidelines promote uniformity
- \Rightarrow Decreased learning curve for new employees
- \Rightarrow Fewer repeated analyses
- \Rightarrow And.....?

♣ Better data can result in reduced NR 101 fees

QA? QC? What's the Difference?			
	<u>QC</u>	QA	
100 mg weight = 83 mg	\checkmark	×	
spike control limits 90-110%	\checkmark	\checkmark	
barometer reads 28.4 inches	\checkmark	×	
no spikes for ammonia, TP	×	×	
TP spike limits -275 to 3047%	\checkmark	×	
TSS oven temp. kept $180 \pm 1^{\circ}C$		×	
Filling out benchsheets in advance dates and names in advance of collection	\checkmark	×	

Types & Uses of QC Samples

Blanks

- Laboratory reagent water.
- Used to verify the absence of contamination in the lab.
- Particularly important in phosphorus and ammonia testing.

Known Standards

- Used to verify calibration curve accuracy, or
- absence of bias in laboratory procedure (vs. matrix-effects)
- best if these are prepared from a different standard than is used for calibration standards.

Replicates

Used to measure precision - the ability to reproduce your results. You got it right once, but can you do it again?

Types & Uses of QC Samples

Spikes

Used to evaluate bias (or accuracy)

(i.e., the recovery of the analyte from the specific sample matrix). *If you only get 25% spike recovery,*

.....and your sample concentration is close to a permit limitisn't it likely the permit limit has actually been exceeded?

Reference Samples

• Annual requirement

• "Show me you can do this test right"

х

Blind Standards

Same as reference samples, but more timely.

But the materials must be used correctly to serve their purpose: precision and accuracy

Setting Up an Effective QA Plan

✓ Standard Operating Procedures (SOPs) should be available for anything not self-explanatory

Ex. How do you clean the phosphorus glassware? Essentially, if someone unconnected to the lab were to perform this task, what guidance would they need to do it?

✓ You can simply reference SOPs, rather than including them in your QA Plan

 \checkmark If you don't do it, DON'T include it in the QAP.

Many QA Manuals are merely loaded with marketing "fluff" that doesn't say much

QA Plan "Don'ts"

DON'T allow your QA Manual to read like

The "baffle them with really serious, business-type words" approach

Quality Assurance is a systematic design plan incorporating a number of related laboratory aspects.

We know what QA is, but it's too complicated to explain here.

••••••

The "We do some really high-tech stuff here" approach

Accurate and precise analytical data can only be realized by systems that are capable of comparing the response of a real world sample to the response of a known standard.

First you have to calibrate.

Setting Up an Effective QA Plan

3 rules for building a QA Plan by tables

What am I <u>looking at</u>? (parameter)

What am I looking at it for (criteria)

What if it <u>doesn't meet specifications</u>? (Corrective Action)

Sound easy enough? Let's see some real-life examples.....

Setting Up an Effective QA Plan		
Evaluating?	Criteria	Corrective Action
Method Blank	Below LOD	 Identify source Correct & Reanalyze or Qualify data
Known Standard	Within 90-110%	1) Check prep. data 2) Re-make & re-analyze 3) Make new curve
Matrix Spike	Within Control Limits (80- 120%)	1) Re-make & re-analyze 2) Analyze known std. 3) Qualify data

QA Plans - The Bottom Line		
Driof	NOT	volumes
DHEI	- 1001 -	volumes
Realistic	- NOT -	marketing "fluff"
Guidance	- NOT -	Philosophy
Decision trees	- NOT -	generic options
Reference	- NOT -	paperweight
Tables	- NOT -	text

Calibration - Initial Considerations

Calibration Curve Frequency-Best Run Daily

- For best results, should be run daily.
- Alternatively, a "full" calibration can be analyzed initially and verified (with one or more standards) each day of analysis.

Use a minimum of 3 standards

MUST be constructed using at least 3 standards and a blank.

NR 149.13 (3) (b) ... A calibration shall consist of at least 3 standards and a blank except as allowed in approved methods using ion selective electrodes or inductively coupled plasma.

To include...or not to include (a blank)?

Rule of thumb:

if you can adjust your instrument to read zero with a blank, then <u>include</u> the blank in your calibration curve.

Including a blank is generally appropriate for colorimetric procedures

Calibration - Other Considerations

Define your calibration range properly

- Range should be appropriate for the samples being analyzed (*i.e. don't calibrate from 1- 5 mg/L if your samples fall between 0.05 0.5 mg/L*).
- Better results are obtained when sample response is close to response of standards used to establish the calibration curve.
- Optimal results ==> when sample results fall near the mid-point.
- Standards should also be evenly spaced.

1, 2, and 500 are NOT good levels for a calibration

- Whenever possible....bracket samples with calibration standards.
- Low standard not more than 2 to 5 times the LOD (best is = LOQ).

Calibration - Hand Drawn Graphs-summary Observations Some prepared graph landscape vs. portrait Some used the whole page, others just part of the page Quite a bit of spread in the data....range of 1 ppm or more Some read to nearest 0.01 ppm; others to nearest 0.1 Food for thought.... What if your permit limit is right about 1 ppm? Should the line pass through the origin (0,0)? How different would a linear regression be?

Calibration - Linear Regression

Calibration exercises 2. Linear Regression

Calculate a regression line from:

Calibration Data	Find Concentrations
mg/LP Abs.	Absorbances
0 0	0.118
0.1 0.051	0.531
0.5 0.25	0.770
2 0.72	0.853
5 1.24	1.092

Sharp EL-520L basics

Basics

- MODE button: **0** = basic calculator, **1** = mean & SD, **2**= regression
- 2nd F button (yellow, upper left of calculator).
- 2nd F and DEL button clears memory...do this several times to be sure!
- STO button: adds the "X" component of an XY data pair
- M+ button: adds single datum or 2nd of a data pair to memory.
- RCL button: think "Re-call"; retrieves information.
- •****You may want to use a pen or pencil to push buttons!***
- Calculator instruction sheets include instructions on how to turn the calculator off.
- Don't need to do this now...but you should be know how to do it if you need to.
- Will automatically shut-off after about 10 minutes if not being used.

Calibration Evaluation - Linearity Check Most analyses have a limited linear range Deviation from linearity usually related to concentration Can occur at both the lower and the upper end Unsure? Review "response factors" for each calibration level Look for the point at which deviation occurs Response Factor (RF) = <u>Response (= Absorbance)</u> Concentration

Line	Linearity Checks - Response Factors				
	RF				
		Abs	Rise	e in Abs.	
mg/L	Abs.	mg/L	Per	0.2 mg/L	
0	0		р 		
0.20	0.175	0.875	Low end variability	0.175	
0.40	0.325	0.813	[★	0.150	
0.60	0.500	0.833	1 Midpoint: stability	0.175	
0.80	0.675	0.844		0.175	
1.00	0.825	0.825		0.150	
1.20	0.950	0.792	Steady decline in RF	0.125	
1.40	1.000	0.714	characteristic of	0.050	
1.60	1.050	0.656	exceeding linear	0.050	
1.80	1.075	0.597	range	0.025	
2.00	1.150	0.575	↓	0.075	
Data Source: North Central Labs at www.nclabs.com					

Calibration Evaluation - On-going checks

- Periodically confirm that response has not changed from initial.
- Use a midpoint standard (check standard) and blank.
- Calculate % recovery.
- Check at <u>beginning</u>, <u>every 10</u> samples and <u>end</u> of each batch. For WWTPs doing 1-2 samples/day, only need one Recovery must be within 90-110% for phosphorus and ammonia.

% Recovery = <u>measured Value</u> x 100 True value

LOD vs. LOQ

Limit of Detection (LOD) & Limit of Quantification (LOQ)

LOD

- ✓ Lowest concentration determined to be <u>significantly different</u> from a blank
- ✓ Formerly known as the MDL (Method Detection Limit)

LOQ

- ✓ Analyte concentration at which one can state with a specified degree of confidence that an analyte is present at a specific level in the sample tested.
- ✓ Defined in code [NR 149.03 (16)] as 10/3 times the LOD (i.e. 3.33 x LOD)

Why is it important to know the LOD

- \Rightarrow Confidence in results reported
- \Rightarrow Alerts data-user to uncertainties or limitations of the data
- \Rightarrow Proper decisions can be made based on data
 - Compliance decisions often made from pooled data
 - What do you do with data of: <25, 32, <40, 22.5, <50

Determining the LOD for BOD

BOD detection limits are theoretically based.

• Assumption: the LEAST amount of depletion allowable is 2 mg/L.

- BOD bottle

- Based on the highest volume of sample used in a dilution series.
- This technique doesn't consider seed correction.

LOD mg/L = 2 mg/	L X $\frac{30}{mL}$	0 mĽ sample
If the highest sample volume used is:	The LOD for that <u>sample is:</u>	The LOQ for that <u>sample is:</u>
300 mL 200	2	6.7 10
100	6	20 26 7
50	12	40

Determining the LOD for TSS

Like BOD, detection limits are *theoretically based*.

Assumption: Minimum capture weight of 1 mg (of residue).Based on: Volume of sample filtered.

Thus, if 1 liter of sample is filtered, then you can "detect" 1 mg per liter.

		1 mg
LOD mg/L = 1000	X mL s	ample filtered
Volume filtered	LOD	LOQ
25 mL	40 mg/L	133 mg/L
50	20	67
100	10	33
250	4	13
500	2	6.7
1000	1	3.3
ce most permit limits are about 30 mg/L, yo	u will need to	filter at least 50 mL o

The EPA procedure for determining LOD

- 1. Determine a spike concentration (close to the expected LOD)
- 2. Prepare at least 7 spiked replicates of reagent water at this spike level

NOTE: Be aware that some older permits may specifically require the LOD to be determined in effluent.This is particularly true for chlorine determinations.Realistically, it may be best to determine your LOD in effluent.Practically, however, by doing so, may not be able to achieve a valid LOD. If there is a question, bring it up with your area engineer

- 3. Calculate the mean (X) and standard deviation (SD)
- 4. Obtain the "t"-value associated with the number of replicates
- 5. Calculate the LOD: SD times t
- 6. Perform the "5-point check" of the LOD

Spikes: Discussion Items

- \Rightarrow Why do we do matrix spikes?
- \Rightarrow How much should I spike? (spike to background ratio)
- \Rightarrow How much can I dilute my sample?
- \Rightarrow Calculating recovery
- \Rightarrow What does my recovery mean?
- \Rightarrow Exercise : review calculation examples

DO NOT need matrix spikes for: • BOD

Suspended Solids

Spike Basics				
Why:	To evaluate the accuracy of method as influenced by specific matrices (sample types).			
How:	Add known amount of analyte to randomly selected routine samples			
When:	5% of samples (1 per 20 samples) PER MATRIX NOTE: Raw + effluent = 2 DIFFERENT MATRICES			
What:	 Calculate % recovery Evaluate performance against control limits 			

Spike Dilution Issues

The goal of a matrix spike is to provide us with information regarding how accurate our sample analysis results are.

If spike recovery is only 50%, then the potential exists that the true concentration of the target parameter is as much as twice the measured concentration.

Dilution - How much is too much?

The bottom line is that you want to use as much sample for

- the matrix spike as you did for the sample itself.
- References vary on how much dilution is TOO much.
- Our guidance has been to limit dilution to 10% or LESS.

We frequently see laboratories that prepare spikes by diluting a sample 50:50 with the spike solution. The next slide provides a more graphic explanation for why this is inappropriate.

Spikes - Calculating Recovery

Calculation of % Recovery

% Recovery = $\frac{\text{Spiked Sample} - \text{Unspiked sample}}{\text{Amount of spike added}} X 100$

seems simple enough.....BUT.....

Results will vary depending on whether you

- simply add the spike on top of the sample, or you
- add the spike first, then dilute to a fixed volume with sample, and
- is further compounded by whether or not you are digesting

Remember: Do NOT perform any rounding until the last step!

Spike Recovery Exercise			
Calculation of % Recovery			
% Recovery = Spiked Sample – Unspiked sample X 100 Amount of spike added			
Wastewater Lab operator/analyst "Joe" measures out 50 mLs of sample, and places the beaker on a stir plate. He then adds 1 mL of buffer solution. After stabilizing, the meter reads 2.0 mg/L ammonia. Unspiked sample 2.0 ug/mL Unspiked Sample Volume 50 mL Joe" then measures out another 50 mLs of sample to prepare a mnatrix spike. To the 50 mLs of sample he adds 5 mL of a 25 mg/L ammonia standard. This beaker is then placed on the stir plate. He then adds 1 mL of buffer solution. After stabilizing, the meter reads 4.25 mg/L ammonia.			
Spike volume 5 mL Spiked sample 4.25 ug/mL Spike Conc. 25 ug/mL Total volume 55 mL			
What's the % recovery?			

Is the Recovery....

A) 90%

- **B) 98%**
- **C) 99%**
- D) 107%, or
- E) None of the above

?

Conventional Calculation: "spike "on top"			
Matrix Spikes:	Ammonia e	xample- adding "	'on top"
Unspiked sample Unspiked Sample Volume	2.0 ug/mL 50 mL	Spiked sample Total volume	4.25 ug/mL 55 mL
Spi Spi	ke volume 5 ke Conc. 25	mL ug/mL	
A. Correct the concent 2.0 ug/mL X (50/55	$\begin{array}{llllllllllllllllllllllllllllllllllll$	e unspiked sample a x 0.91	= 1.82
B. Correct the spike c 25 ug/mL X (5	concentration $5/55$ mL = $.09$	= 91	2.27
C. Calculate recovere = (4.25 ug/mL)	d concentrati	on =	2.43
% Recovery = = $(C / B) \times 100$	=(2.43/2.2)	7) X 100	107.0%

key relationship: mg/L = ppm = ug/mL

NEW Ca	lculation:	"spike "on t	op"
Unspiked sample	2.0 ug/mL	Spiked sample	4.25 ug/mL
Unspiked Sample Volun		Total volume	55 ML
s	pike volume pike Conc. 25	5 mL 5 ug/mL	
A. Contribution (ug)	from the samp $(5 mL - 5 mL) =$	le in the spike = 2.0×50	100
B. The # of ug (of analyte) <u>spiked</u> =			125
25 ug/mL X 5	mL		
C. The # of ug (of analyte) in the spiked sample =			233.75
4.25 ug/mL X	55 mL		
D. The # of ug (of analyte) <u>recovered</u> =			133.75
= C - A = 2	33.75 - 100		
% Recovery =			107.0%
= D / B = (13)	<u>3.75 / 125) X 10</u>	00	

Replicate Basics Why: Used to evaluate repeatability (reproducibility) How: Analyze randomly selected routine samples in duplicate (including digestion steps) When: 5% of samples (1 per 20 samples) NOTE: Raw + effluent = 2 samples What: 1. Calculate Range (or RPD) 2. Evaluate performance against control limits NOTES: 1. Replicates are frequently termed "Duplicates". The terms are interchangeable. 2. Precision is concentration dependent

Measuring Precisi	ion <u>Example</u>	
Evaluating ReplicatesSample = 22Based on <u>absolute</u> difference (Range) or <u>Relative</u> Replicate = 18percent difference (RPD) between duplicatesSample = 22		
Range expressed in same units as values = Absolute Difference = Larger value – smaller value	Range = 22 - 18 = 4	
RPD expressed as % RPD = $\frac{\text{Range}}{\text{Mean of the replicates}} \times 10^{\circ}$	RPD = Range / MeanRange = 4Mean = (22 + 18)/2= 20RPD = (4/20) x 100= 20%	

		_	RPD?	Or F	Range	?		
Sample	Replicate	Ange	<u>RPD</u> 5.8%	Sample	Replicate	Range	RPD	
161	168	7	4.3%	200	230	30	14.0%	
143	151	8	5.4%	300	330	30	0 504	
136	142	6	4.3%	300	330		9,3%	\frown
155	160	5	3.2%	400	430	(30)	7.2%	
172	177	5	2.9%	\frown		\smile		
164	155	9	5.6%	concentr	ation incre	2200 21	ooint is	
150	158	8	5.2%			50353 , a		
145	137	8	5.7% rea	ched whe	ere range	talls but	RPD pase	ses.
140	147	1	4.9%	• •	D 41 4	D .	DDD	л I.
120	119	0	4.9%	Sample	Replicate	Range	RPD	
140	102	0	4.0%	100	107	7	6.8%	
143	136	6 4	4.1%	50	57	7	13.1%	
152	146	6 /	4.0%	25	32	7	24.6%	
144	138	6	4.3%	10	17	7	51.9%	
169	180	°/	4.9%	5	12	Λ_7	82.4%	2
130	1/0	%	4.7 /0					2
153	140	Å	A 7%				maintia	
Mean	151 75	71	47% AS	concentra	ation decr	eases, a	point is	
Stdev	/		1.1% rea	ched whe	ere range	passes b	out RPD fa	alls.
UWL		17.8	6.8%					
UCL	C,	25.3 ∱	7.9%					

Will RPD work for you?

Sample	Replicate	Range	RPD	
200	216	16	7.7%	
250	270	20	7.7%	
300	324	24	7.7%	
350	378	28	7.7%	
400	432	32	7.7%	

As concentration increases, the absolute range can increase accordingly with NO CHANGE in RPD

For a given range, as concentration increases, RPD decreases

For a given range, as concentration **decreases**, RPD increases

When might this be of use?

If your system is susceptible to high I & I If your system exhibits high variability in influent loading It might be a good idea to use RPD for raw; range for final

Do I need Control Charts?

NO..... but.....

 \bigcirc Control chart use <u>is</u> "strongly encouraged"

Control charts are useful in heading off problems

Control charts provide a <u>visual</u> tool

What exactly do I need?

NR 149.14 (3) (g)

Quality control limits

for <u>replicate sample</u> and <u>spiked sample</u> analysis

shall be calculated for each matrix type

using a method from an authoritative source

[NR 149.03 (5) (a - w)].

.....

When quality control data

shows a dependency on concentration,

the laboratory shall calculate separate control limits

to address the concentration dependency.

.....

Control Charts...Things to Look for

Signs of analytical bias

- a recovery mean much lower than 100%
- a recovery mean much greater than 100%

Signs of trends

• sudden or gradual changes in where data fall on the charts

Other trends

- 7 successive points on same side of the mean
- 5 or more points moving in the same direction

From Standard Methods

- 3 of 4 successive data points outside warning limits
- 4 of 5 successive data points exceeding the
 - mean ± 1 standard deviation

Calculating Control Limits

Matrix spike & RPD Control limits

- 1. Test the data for and eliminate outliers before proceeding.
- 2. Calculate the mean and standard deviation of the data.
- 3. Warning limits = Mean ± 2 standard deviations
- 4. Control limits = Mean + 3 standard deviations
 NOTE: RPD is a 1-tailed test, so only Mean +

Range Control limits

- 1. Test the data for and eliminate outliers before proceeding.
- 2. Calculate the mean of the data.
- 3. Warning limits = 2.51 x Mean
- 4. Control limits = 3.27 x Mean

Dealing With Outlier Data				
There are many statistical tests available for identifying outliers. One that is relatively easy to use is the Grubbs test.	<u>N</u> 18 19 20	Critical <u>Z</u> 2.65 2.68 2.71		
$\mathbf{Z} = \frac{\text{mean} - \text{questionable data point}}{\text{SD}}$	21 22 23	2.73 2.76 2.78		
Ignore the sign of the "Z" valueis always " + "	24 25	2.80 2.82		
For replicates, test <u>only</u> the highest value	26 27	2.84 2.86		
 For spikes, test both the lowest & highest values Include suspect outlier when calculating mean. SD 	28 29 30	2.88 2.89 2.91		
 If the calculated Z-value > Critical Z value for that number of data points 	35 40	2.98 3.04		
then the value is an outlier	50 60	3.13 3.20		

What is Corrective Action?

- In a nutshell, Corrective Action is anything done in response to an out-of-control situation.
- It MUST, however, be designed to <u>identify the reason</u> for the failure, and then <u>correct it</u>.
- There should also be a plan to quickly verify that the action taken has the desired effect.

What is NOT considered adequate Corrective Action

- TWriting "I don't know why it failed"
- ^C Simply labeling all matrix spike failures as "matrix effects"
- ${}^{\textcircled{P}}$ Checking calculations only
- ^{CP} Simply re-running the samples

NR 149.14(3) (h, i) requires the laboratory to:

© Repeat all samples

- The back to the last valid QC sample of the same type
- T unless you can show that ONLY that one sample is affected

F If samples cannot be re-analyzed....

results must be <u>qualified</u> back to the acceptable check.

DMRs require you to...

- The "QC Exceedance" box, and also
- *^{ce}* identify (*) all sample results that are affected.

What does "qualify" mean?

NR 149.03 (21m) "Qualify" means to place a written statement accompanying the test results which identifies anomalies encountered in generating the data.

- NR 149.14 (3)(h) If the results of known standards, spiked samples, method blanks, or replicates exceed the quality control limits...
- ...results are qualified by reporting that the laboratory analysis was * Matrix anike recovery (61%) for the ecceptance (61\%) for the ecceptance (61\%) for the ecceptance (61\%) for the ecceptance (61\%) for the ecceptance (

this day. Results must be qualified from this date back to

* MAXXXXXXAH23221FAG/LINEXLESE ABGROOTERIFAIRS RIVES SPECIES FAGALYSKI

this day. GGA is run daily, so only these results are

* Method blank (0.07ppm) was higher than the LOD (0.05

Are there preventive measures I can take? You may wish toincrease the frequency of QC sample analysis ...above the minimum ...to minimize the amount of data which must be qualified ...in the event of an exceedance. It's a good idea to create some sort of logbook or form to document these situations. HOW did you become aware of the problem? WHAT action did you take to fix the problem? HOW do you know the problem has been resolved? ...essentially leave a "trail of breadcrumbs" that others can follow in similar circumstances

Creating a Corrective Action Plan				
Situation	<u>Corrective Action</u>			
BOD: GGA failing high	 Was initial calibration done properly? Change in seed source? Possibility of nitrification? Qualify data on DMR back to last good GGA. 			
NH ₃ electrode slope < -54 mV	 Check that membrane is intact; no bubbles. Make sure fresh filling solution is used. Is the electrode stablizing normally? too slow? Is the intercept climbing above the LOD? 			
Phosphorus calibration "r" is <<<0.995	 View plotdoes a single standard look funny? Beyond linear range? (about 1 ppm for most) Contaminationespecially at low level? 			

But.... no one ever looks at this stuff....

- Consider it insurance: pay it and hope you won't need it
- If your data comes under scrutiny, you lose without it
- It can actually help identify problems
- Your auditor WILL look at this
- Provides credibility for test results
- Shows you are doing the test properly
- *Keeps those DNR auditors off your back!*

Basic Items to document

- Refrigerator & autosampler temperatures
- Oven temperatures during solids analyses
- pH calibration
- Reagent preparation
- Balance calibration verification
- Annual balance maintenance
- Raw data from sample analysis
- \blacksquare When the membrane is changed on the DO probe

Not-so-obvious items to document

Corrective actions taken

if an auditor asks what you did in response to a GGA failure... can you <u>show</u> them? (ability to <u>tell</u> doesn't count!)

Historical QC limits can you find control limits in use 3 years ago?

Blind Sample Performance History Can you show an auditor your performance over the past 3 years?

Instrument maintenance

Matrix Spike Preparation details

- often overlooked!

What the code says: [NR 149.06 (1)(intro.)]

Records to be retained include but are not limited to ... the following:

 (b) Quality control data for spikes, replicates, method blanks, blind standards reference samples, calibration standards and known standards. Quality control results shall be traceable to all of the associated sample results.

What it means (as it relates to spikes):

An auditor must be able to verify spike concentration, which means

- Concentration of the solution used to prepare spikes
- Information necessary to show that spike solution had not expired.
- The volume of spike solution used
- The volume of sample used
- The final volume of sample + spike
- The sample that was used to prepare the spike

Summary

- ☑ Formulate a gameplan [your QA manual]
- \blacksquare Calibrate (and <u>evaluate</u> it)
- ☑ Determine your detection capability
- ☑ Measure your accuracy
- ☑ Measure your precision
- Evaluate your precision and accuracy
- ☑ Implement a corrective action plan
- Provide documentation

Questions?

George Bowman (608) 224-6278

(000) 224 0210

State Laboratory of Hygiene 2601 Agriculture Drive Madison, WI 53718 **Rick Mealy** (608) 264-6006

Wisconsin DNR PO Box 7921 Madison, WI 53707

State Lab web address: http://www.slh.wisc.edu/outreach/ DNR's LabCert homepage: http://www.dnr.state.wi.us/org/es/science/lc/ LabCert "toolbox":

http://www.dnr.state.wi.us/org/es/science/lc/toolbox/

