

Disclaimer

Any reference to product or company names does not constitute endorsement by the Wisconsin State Laboratory of Hygiene, the University of Wisconsin, or the Department of Natural Resources.

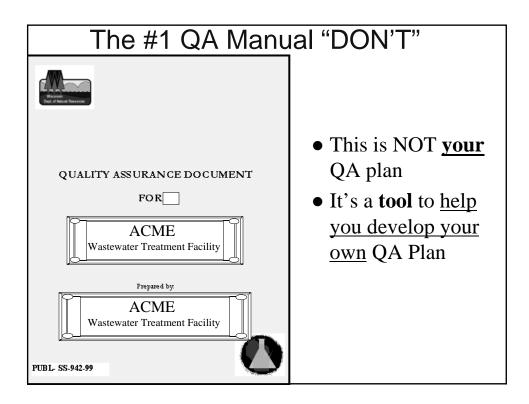
Overview

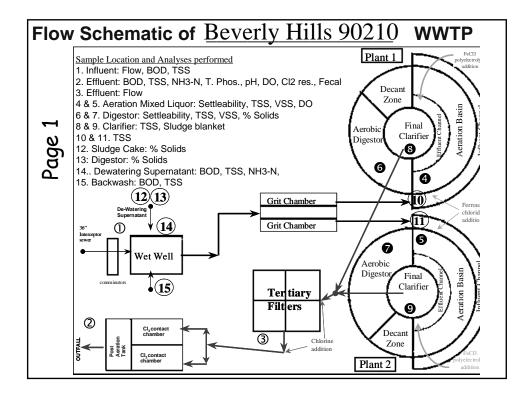
- QA Manual Kit
- Dealing With Unacceptable LODs
- Spike Calculation Secrets
- Control Limit Tips
- Taking the Correct Corrective Action
- "There's Something You Should Know About This Data"
- Documenting Your Documentation

Quality Control is all around us

You often don't notice it...

but it's constantly at the root of daily news stories....


- ... we can see it in the movies or...
- ...subtley make reference to it in coversation


From the movie Armageddon, listen as Steve Buscemi's character makes a witty reference to QC (or lack thereof):

Essential Elements of QA Plan

- Schematic Diagram
- Sampling Plan (Permit & Process Control)
- Sample Handling, Preservation
- Analytical Methods
- ✓ General Lab Quality Control Checks
- ✓ Quality Control Sample Frequency & Criteria
- ✓ Corrective Action Plan
- Preventive Maintenance Plan
- Data Reporting Requirements
- List of SOPs

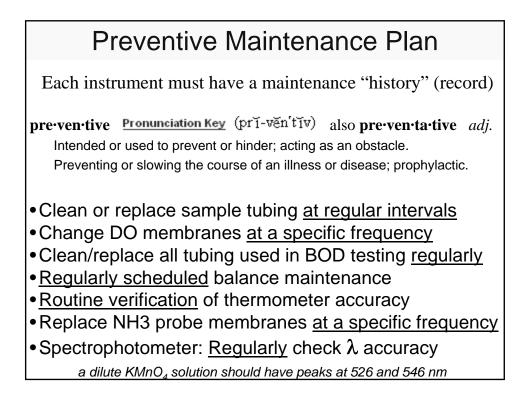
	Sa	ampling	g Pla	an: Pe	rmit N	1oni	tori	ng	
	SAMPLE		SAMPLE POINT (Schematic	PARAMETERS	MONITORING	Daily	<u>PERMIT LIN</u> Daily	Weekly Average	
	LOCATION Influent	SAMPLE TYPE Continuous	Reference)		FREQUENCY Totalized Daily	Minimum	Maximum	(mg/L)	(mg/L)
Page 2	Influent	24-hr composite Xilow proportional time proportional	1	BOD TSS	3X weekly 3X weekly	there s here	hould b	e no lir	nits
	Influent	Grab							
	Effluent Outfall 001	Continuous	2	Flow	Totalized Daily				
	Effluent Outfall 001	24-hr composite XX flow proportional time proportional (May-October)	2	BOD TSS Ammonia Total Phosphorus Acute Toxicity Chronic Toxicity	3X year			45 45 3.0 	30 30 1.0
	Effluent Outfall 001	Grab May-September May-September	2	pH Chlorine Residual Fecal Coliforms	Daily Daily weekly	6.0 su 38 ug/l 	9.0su 		 400/100ml

San	npling F	Plan: Pro	ocess	Control N	lonitoring
	SAMPLE LOCATION	SAMPLE TYPE	SAMPLE POINT (Schematic Reference)	PARAMETERS TESTED	MONITORING FREQUENCY
ო	Aeration Tank	Outlet grab	4 & 5	Settleability TSS VS	Daily Daily Daily
Page	Aeration Tank	n Tank Contents in-place		Dissolved Oxygen	Continuous
	Solids Concentrator	Product-grab	12 & 13	Percent solids	As needed
	Solids Concentrator	Decant-grab	14	BOD TSS Ammonia	As needed As needed As needed
	Digester Contents	Grab	6&7	Settleability min. %solids TSS VSS	Daily Daily Daily Daily Daily

	SAMPLE HANDLING TABLE									
	PARAMETER	SAMPLE TYPE	PRESERVATION	CONTAINER	MAXIMUM [®] HOLDING TIME	ANALYTICAL METHOD [#]				
9 4	BOD	24-hr composite [flow proportional]	Cool, 4°C	Poly	48 hours	5210 B				
ĝ	TSS	24-hr composite [flow proportional]	Cool, 4°C	Poly	7 days	2540 D				
1	Ammonia	24-hr composite [flow proportional]	Cool, 4°C; H ₂ SO ₄ to pH <2	Poly	28 days	4500-NH3 F				
	Total Phos	24-hr composite [flow proportional]	Cool, 4°C;	Poly	28 days	4500-P B(5) & 4500-P E				
	рН	Grab	None	Poly	Analyze immediately	4500-Н+ В				
	Chlorine Res.	Grab	None	Poly	Analyze immediately	4500-CL G				
	Fecal Coliform	Grab	Cool , 4°C; 0.008% Na ₂ S ₂ O ₃	Poly	6 hours	9222 D				
	Effluent Toxicity	24-hr composite [flow proportional]	Cool, 4°C;	Poly	28 days	subcontract				

From time of completed sampling
 (Reference method source) # Standard Methods for the Examination of Water and Wastewater, 19th Ed., 1995

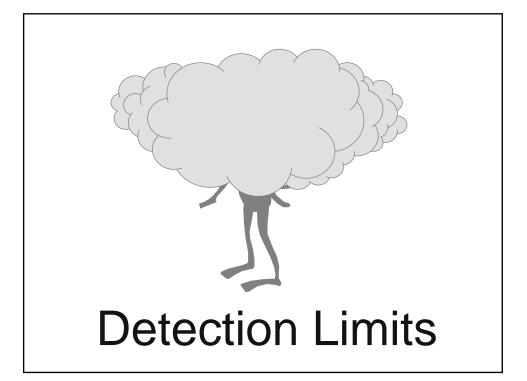
	Gene	ral Lab E	quipment	QC
	What am I checking?	How often should I check it?	What am I checking it against?	What if it doesn't mee specifications?
	(Parameter)	(Frequency)	(Criteria)	(Corrective Action)
വ	Sample Refrigerators Autosamplers	Daily Daily	>0° C, <4° C >0° C, <4° C	Adjust temp.↑ or ↓ Adjust temp.↑ or ↓
	Balance - 10 mg	Weekly	9.7 to 10.3 mg	Re-certify weight of Service balance
9	Balance - 1.0 g	Weekly	0.995 to 1.005 g	Re-certify weight of Service balance
	TSS oven	Daily	103-105 ° C	Adjust temp.↑ or
	BOD Incubator	Daily	19.0 to 21.0 ° C	Adjust temp.↑ or
	Desiccators (bowl)	Daily	Lid lifts easily?	Apply silicone grease to ri
	TSS Filter screens	Daily	Pore blockage	Clean or replace

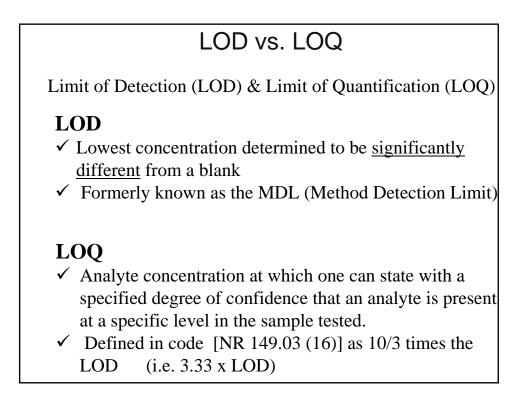

	BOD-S	Specific Requir Page 1 of 2	ements
	Param	BOD	
	and the second second	Minimum Requirements	Facility Requirements
6A	CALIBRATION Frequency Calibration levels:	Daily (DO meter)	Daily (DO meter)
Page 6 A	Evaluation revers. Evaluation criteria: correlation "r" Residuals	N/A	Set to saturation point of oxygen in water pased on temp and pressure
	KNOWN STANDARDS Composition/True Value Frequency Evaluation criteria:	Exactly 6 mLs (2%) of a 150 mg/L ea. glucose/glutamic acid acid 1/20; minimum 1/week 198 ± 30.5 mg/L	Exactly 6 mLs (2%) of a 150 mg/L ea. glucose/glutamic Weekly 198 <u>+</u> 30.5 mg/L
	BLANKS Frequency Evaluation criteria:	Each analysis day (except TSS) \leq 0.2 mg/L O ₂ depletion	Daily $\leq 0.2 \text{ mg/L O}_2$ depletion

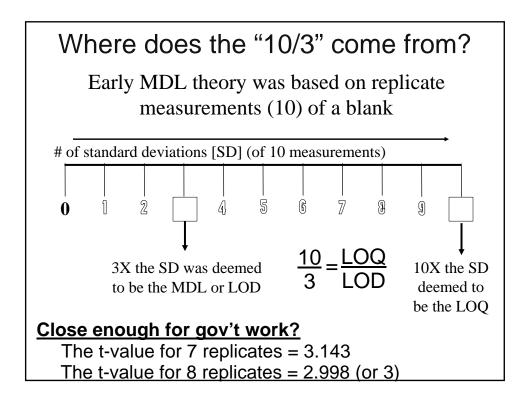
REPLICATES	and a set of the set of the set of the set	
Frequency Influent Effluent	1 per 20 samples per matrix 1 per 20 samples 1 per 20 samples 1 per 20 samples	Every other week (26/yr) Every other week (26/yr)
Evaluation criteria: Influent Effluent	Range or RPD? Range or RPD? Range or RPD?	
SPIKES Prepared by: Adding of a to Final volume= Frequency Influent Effluent Evaluation criteria: Influent Effluent	Preparation of spikes should per dilute the sample matrix by more than 10%. Generally, use the same follower of sample in both the spiked and unspiked samples 1 per 20 samples 1 per 20 samples 1 per 20 samples	Not Required
OTHER SPECIFICS Sample depletion Sample pH Residual chlorine # of dilutions Supersaturation Seed Controls	> 2 mg/L residual DO ≥ 1 6.5 to 7.5 Quench if detected At least 2	> 2 mg/L residual DO > 1 6.5 - 7.5 Quench if detected At least 3 per sample Sample DO < saturation

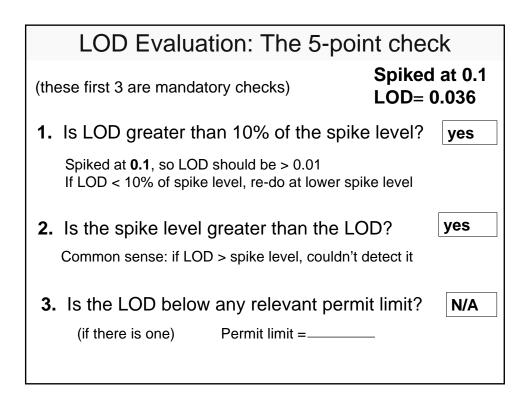
	Corrective Act	Page 7B			
Param	eter: B	BOD			
	Minimum Requirements	Facility Requirements			
CALIBRATION Evaluation criteria: correlation "r"	(DO meter) N/A N/A	Set to saturation point of oxygen in water			
Residuals	N/A				
Corrective Action	Re-calibrate if blank $DO_I >$ If sample $DO_I >$ sat. point,	saturation point bring to room temp & shake			
KNOWN STANDARDS					
Evaluation criteria:	198 <u>+</u> 30.5 mg/L	198 <u>+</u> 30.5 mg/L			
Corrective Action		dd more)or bad GGA (replace) n. Identify source and correct ware			
BLANKS					
Evaluation criteria:	\leq 0.2 mg/L O ₂ depletion	\leq 0.2 mg/L O ₂ depletion			
Corrective Action If blanks gain oxygen: Suspect calibration problem If depletion > 0.2 mg/L Check for contamination. Cleat tubing and still. Obtain new water source.					

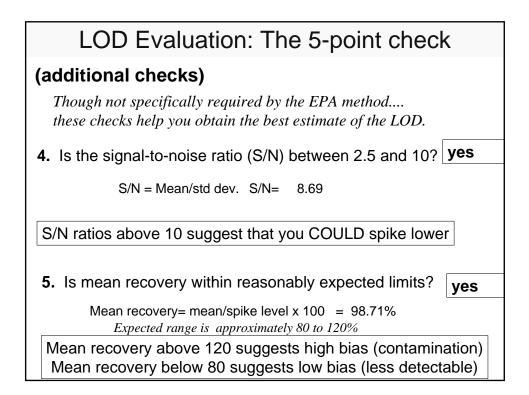
BOD Corrective Action-2						
REPLICATES						
Evaluation criteria:						
Influent Effluent	Range or RPD? Range or RPD?	14.5% Renne or RPD? 1.3 mg/L Range Source				
Corrective Action	Presence of "chunks" in one but not both?document. Qualify data on DMR. Re-evaluate control limits.					
SPIKES Evaluation criteria: Influent Effluent						
Corrective Action	Not Requ	iired				
OTHER SPECIFICS						
Sample depletion	$> 2 \text{ mg/L};$ residual DO ≥ 1	Do not use result.				
Sample pH	6.5 to 7.5	Adjust pH, document, seed.				
Residual chlorine	Quench if detected	Quench, document, seed				

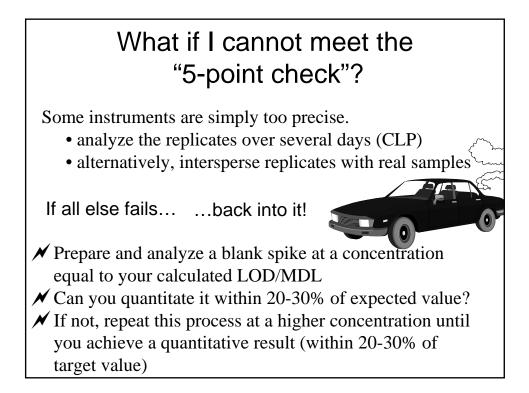

	С	orrective Ac	tion	
	(General Concei	rns	
	What am I checking?	What am I checking it against?	What if it doesn't meet specifications?	
	(Parameter)	(Criteria)	(Corrective Action) Apply silicon grease to rim Replace/regenerate	
	Desiccator seal Indicating Drierite	Adequate? Mostly blue		
Page	TSS Oven	Maintains 103-105°C	Adjustrepairreplace (forced air ovens are better)	
	Balance Class "1" weights	✓ w/ mg & gm wts Statistical criteria	Have re-calibrated/ repaired Have re-certified	
	Thermometers Thermometers	Compare to NIST ✓ for column breaks	Apply correction factors Replace	
	Barometer	✓ vs. WWW/airport	Re-calibratereplace	
	If problem conti efforts, c	nues despite all all DNR auditor	at ()	

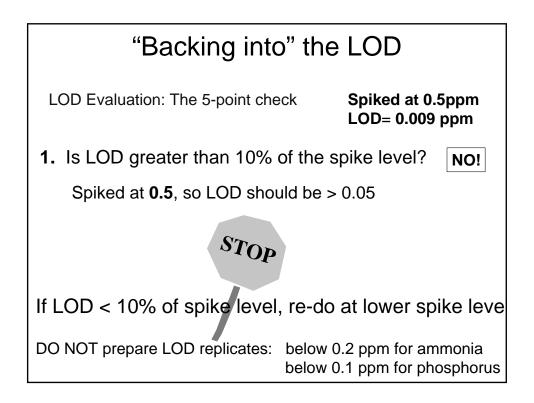


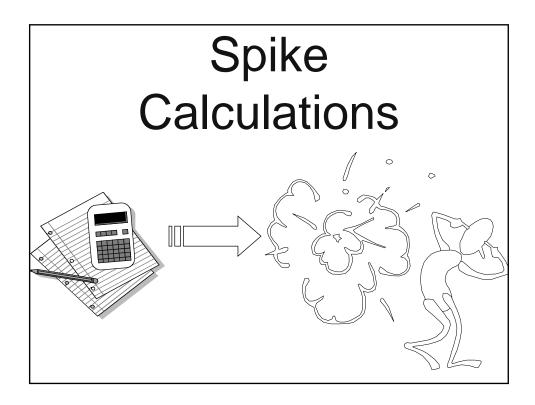

Page 8 Preventi	ve Maintenan	ce Chart
Preventiv What am I checking?	Ve Maintenance Pro What action am I taking?	Cedures How often should I do it?
(Equipment/Part)	(Action)	(Frequency)
Sampler tubing Sampler tubing DO membrane Electrode filling solution	Clean with dilute bleach Replace Change Replace	Every 2 weeks Every 6 months Every 3 weeks Every week
	Action: Taken to fix a pr Maintenance: Taken to p	roblem prevent Corrective Action

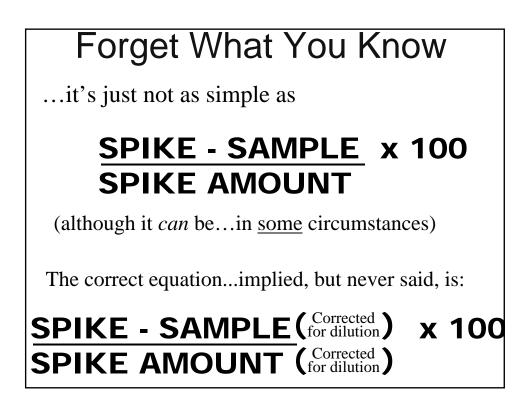

	Lab Equipment Maintenance Log									
		Ι	.ab Equ	ipment	t Maint	enance	and Ca	libration	Log	
			1	Mont	h <u>Octo</u>	ober y	ear <u>2002</u>	2	C	
Date	Analyst	Sampler	Refrig.	TSS Oven	BOD Incubator	Fecal Incubator	pH	BOD Barometer	BOD	
	Intials	Temp. (°C)	Temp.	Temp °C	Temp °C	Temp °C	Meter buffers	reading	Room Temp °C	Comments
1	CTD	· · /	(°C)	104	20.2			0	•	
2	GTB RGM	<u>2.7</u> 1.5	<u>5.1</u> 3.8	104	<u>20.2</u> 19.8	<u>44.6</u> 44.5	<u>4,10</u> 4,10	735mm 745mm		Refrig adjusted ↓
3	GTB	2.3	<u> </u>	67	20.4	44.3	4,10	743mm 739mm		Sampler adjusted 1 Replaced oven thermometer
4	RGM	1.5	3.8	103	19.8	44.5	4,10	745mm		Replaced over thermometer
5	WG	2.2	3.4	108	20.5	44.5	4,10	748mm		TSS Oven adjusted
6	WG	2.6	3.7	100	20.3	44.5	4,10	741mm		TSS Oven adjusted
7			4				.,	755 mm		
8			4					762 mm		
9			4					770 mm		
10			4					765 mm		
11			4					752 mm		
12			4							
13			4							
14			4							
15			4							
17			4							
1/			4							


QA Plan	s - The B	ottom Line
Brief	- NOT -	volumes
Realistic	- NOT -	marketing "fluff"
Guidance	- NOT -	Philosophy
Decision trees	- NOT -	generic options
Reference	- NOT -	paperweight
Tables	- NOT -	text

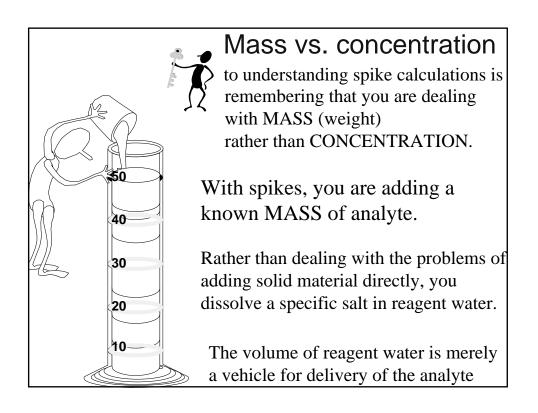


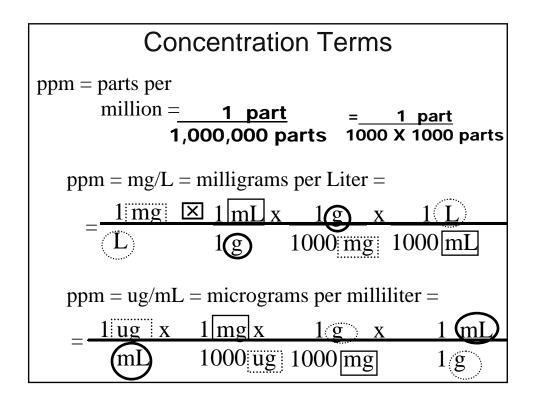






	"Backing into" the LOD					
A	mmonia	Spiked at 0.5ppm LOD=	0.009 ppm			
11	IF you have repeated the "7 replicates" <u>more than twice</u>					
0	OR you have reached the lowest recommended spike levels					
	AND you still don't have a valid LOD					
1.	•	d analyze a single standard at (or close culated LOD	0.01 ppm			
2.	If you obtain	n a result within 20-30% of the ion you prepared, then you have	0.007 - 0.013			
3.	If you DO N prepared c	NOT obtain a value within 20-30% of the concentration then	0.000 ppm			
4.	Prepare an slightly hig	other single standard at a concentration her	0.02 - 0.05 ppm			
5.	0,0	until you obtain a result within 20-30%	0.014 - 0.026 ppm 0.035 - 0.065 ppm			



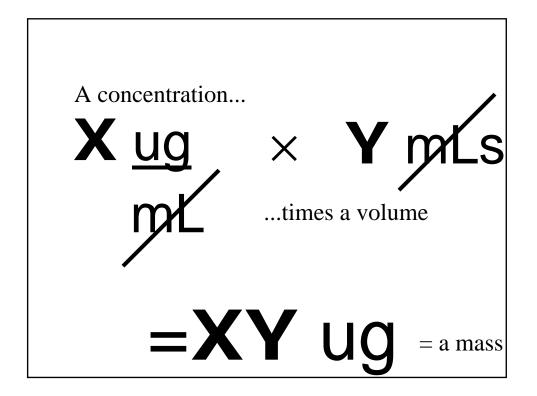

Common Spike Calculation Errors Calculating by concentration and not accounting for dilution of the sample, not accounting for dilution of the spike solution, or both.

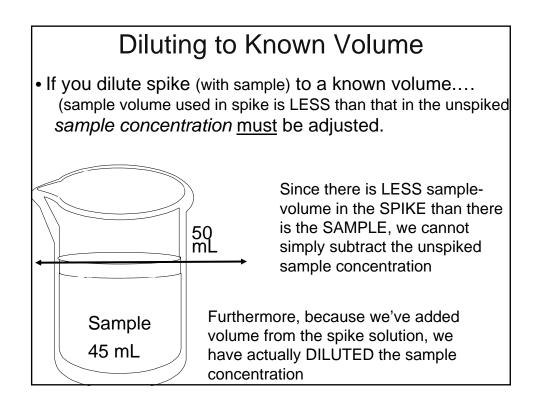
• Calculating a ratio rather than a recovery.

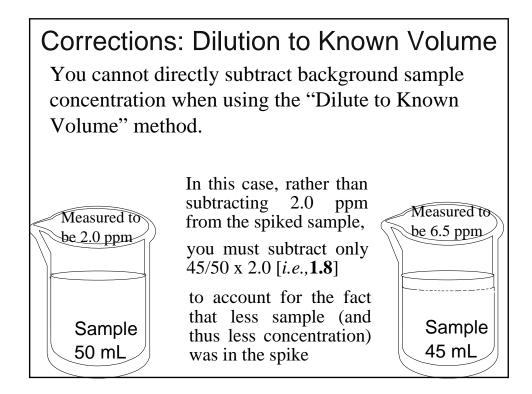
• Using an incorrect formula.

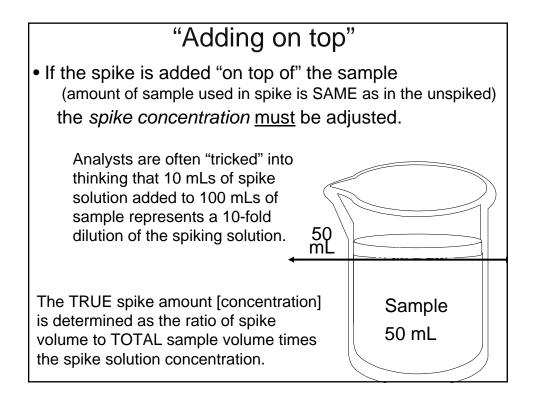
- The only acceptable formula is
- <u>Spiked Sample Unspiked sample</u>
 - Spike Amount

Concentration basics


Joe analyzes a sample for ammonia.


He takes 50 mLs of sample, adds his buffer solution After stabilizing, the meter reads 5.0 mg/L.


The concentration value, 5.0 mg/L, means that in a liter of water, you would find 5.0 mg of ammonia dissolved in it.


But Joe only analyzed 50 mLs of sample; how many mgs of ammonia were in that 50 mLs?

5.0 <u>mg</u> is the same as 5.0 <u>ug</u> L mL 5.0 <u>ug</u> 50 mL = 250 ug <u>1 mg</u> = **0.25 mg** 1000 ug Concentration volume = **mass**

Adding on top - differential effects

If there is **<u>no</u>** pre-treatment or sample volume reduction involved (*e.g., digestion, distillation*):

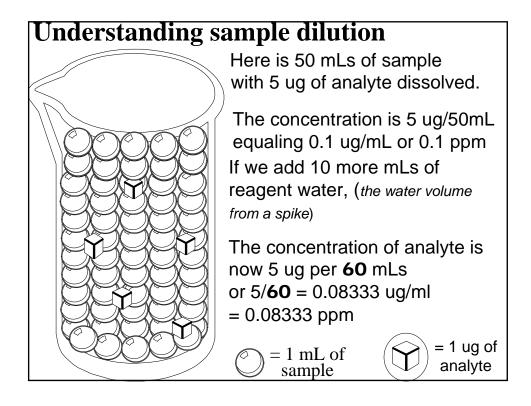
TWO correction factors are required:

- one for the dilution of sample concentration, and
- another for dilution of spike concentration

If there **is** a pre-treatment step or sample volume reduction involved (*e.g., digestion, distillation*):

No correction factor is required.

Examples: Total phosphorus by hot plate, distilled ammonia


Spiked sample result – Unspiked sample result Spike Amount

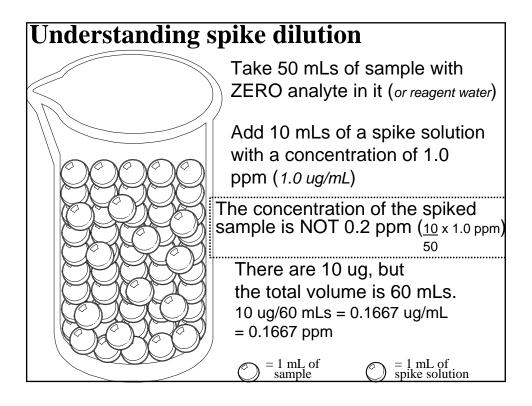
I analyze 50 mLs of <u>sample</u>. It measures 0.1 ppm [ug/mL] ammonia I take another 50 mLs of sample and add 10 mLs of a 1.0 ppm [ug/mL] ammonia standard. I analyze this <u>spike</u> and I get 0.2 ppm [ug/mL]

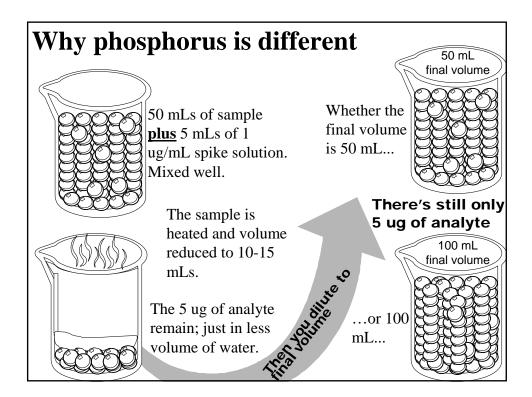
$$\frac{0.0833}{0.2 \text{ ppm} - \frac{0.1 \text{ ppm}}{0.2 \text{ ppm}}} \times 100 = \frac{58.3}{50\%}$$
 Right?

Remember: we are dealing with concentrations here. If the concentration of unspiked sample was 0.1 ug/mL, and 50 mLs of sample were used, then we know 5.0 ug (50 x 0.1) of ammonia came from the sample. We also know that the total volume of the sample + spike was 60 mLs. Thus the concentration of the unspiked sample is now 5 ug = 0.0833 ppm

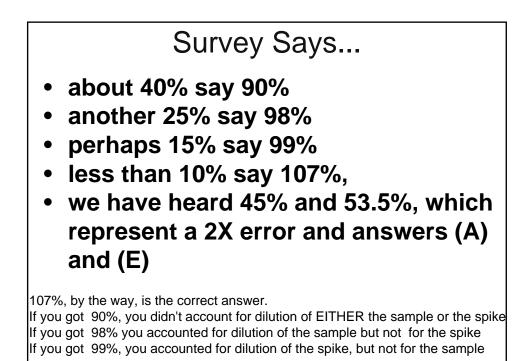
<u>60 mLs</u>

Spiked sample result – Unspiked sample result Spike Amount

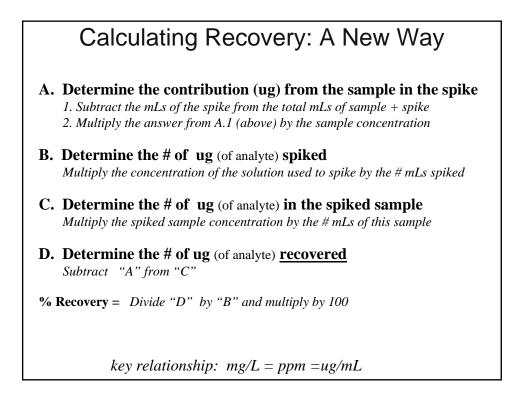

I analyze 50 mLs of <u>sample</u>. It measures 0.1 ppm [ug/mL] ammonia I take another 50 mLs of sample and add 10 mLs of a 1.0 ppm [ug/mL] ammonia standard. I analyze this <u>spike</u> and get 0.2 ppm [ug/mL]


$$0.2 \text{ ppm} - 0.0833 \text{ ppm} \times 100 = 50.3\% \text{ Right?}$$

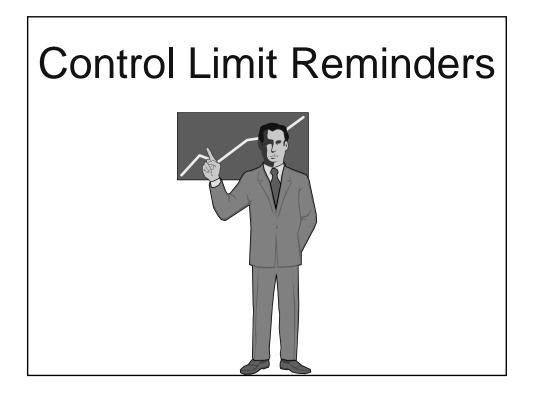
$$0.1667 \text{ Yes ...70\%}$$


Nope! We ALSO have to correct for the dilution of the spike solution. If 10 mLs of a 1.0 ug/mL spike solution were spiked, then we know 10 ug of ammonia were added from the spike.

We also know that the total volume of the sample + spike is 60 mLs. Therefore the concentration of the unspiked sample is $\frac{10 \text{ ug}}{60 \text{ mLs}} = 0.1667 \text{ ppm}$



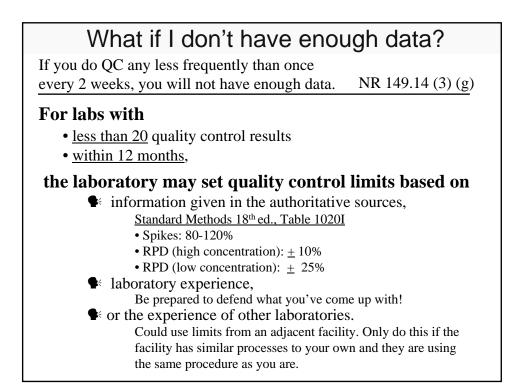
Spike Recovery Exercise						
Calculation of % Recovery						
% Recovery =	Spiked Sample Amount of	– Unspiked sample	X 100			
Wastewater Lab		t "Joe" measures ou	ut 50 mLs of			
sample, and places the beaker on a stir plate. He then adds 1 mL of buffer solution. After stabilizing, the meter reads 2.0 mg/L ammonia. Unspiked sample 2.0 ug/mL Unspiked Sample Volume 50 mL						
"Joe" then measures out another 50 mLs of sample to prepare a matrix spike. To the 50 mLs of sample he adds 5 mL of a 25 mg/L ammonia standard. This beaker is then placed on the stir plate. He then adds 1 mL of buffer solution. After stabilizing, the meter reads 4.25 mg/L ammonia.						
Spike volume Spike Conc.	5 mL 25 ug/mL	Spiked sample Total volume	4.25 ug/mL 55 mL			
What's the % recovery?						

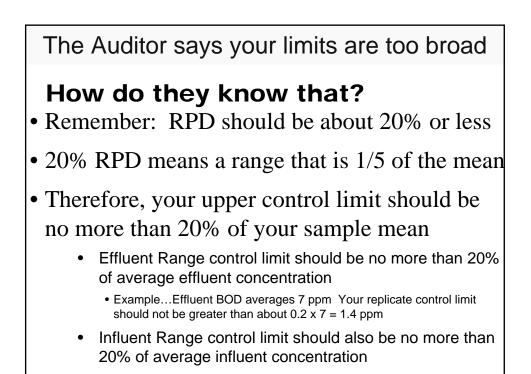


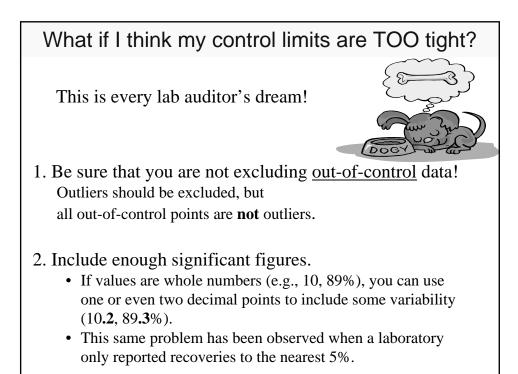
Conventional Calculation: "spike "on top"						
Matrix Spikes: Ammonia example- adding "on top"						
Unspiked sample2.0 ug/mLSpiked sample4.25 ug/mLUnspiked Sample Volume50 mLTotal volume55 mL						
Spike volume 5 mL Spike Conc. 25 ug/mL						
A. Correct the concentration in the unspiked sample = 1.82 2.0 ug/mL X (50/55) mL = 2.0 x 0.91						
B. Correct the spike c	2.27					
25 ug/mL X (5, C. Calculate recovered –(4.25 ug/mL	2.43					
=(4.25 ug/mL - % Recovery = = (C / B) x 100	U	27) X 100	107.0%			

NEW Calculation: "spike "on top" (use for any analysis that is similar)							
Unspiked sample Unspiked Sample Volume	2.0 ug/mL 50 mL	Spiked sample Total volume	4.25 ug/mL 55 mL				
Spike volume 5 mL							
	Spike Conc. 25 ug/mL						
A. Contribution (ug) from the sample in the spike = 100 2.0 ug/mL X (55 mL - 5 mL) = 2.0 X 50							
B. The # of ug (of analy	125						
25 ug/mL X 5 m C. The # of ug (of analy	233.75						
<i>4.25 ug/mL X 55</i> D. The # of ug (of analy	133.75						
= C - A = 233	155.75						
% Recovery = = $D / B = (133.7)$	107.0%						

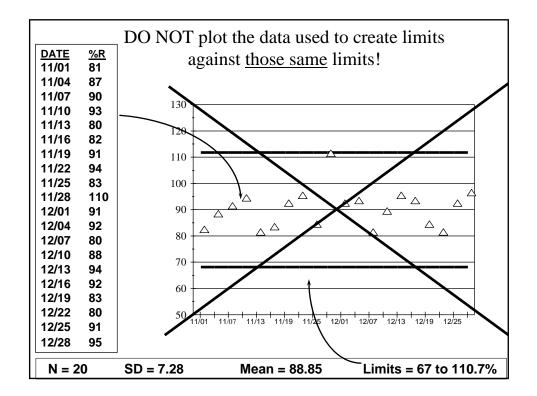
Unspiked sample .246 X 25 = 6.15ug/mL		.346x 25= 8.65 ug/ml
Unspiked sample Volume 2mL=>50 mL	Total volume	2 mL + 1 mL =>50 mL
Spike volume		
Spike Conc.	5 ug/mL	
A. Contribution (ug) from the sam	ple in the spike	=
ug/mL X (mL	$mL) =$	X
B. The # of ug (of analyte) spiked =	:	
ug/mL X mL		
C. The # of ug (of analyte) in the sp	oiked sample =	
ug/mL X mL		
D. The # of ug (of analyte) recovere	ed =	
<u>-</u>		
% Recovery =		%
() X 100		
	Example: Pho	Sphorus- hotplate

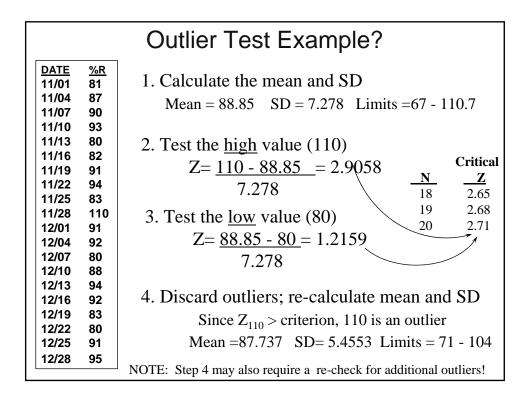

Calculating Control Limits

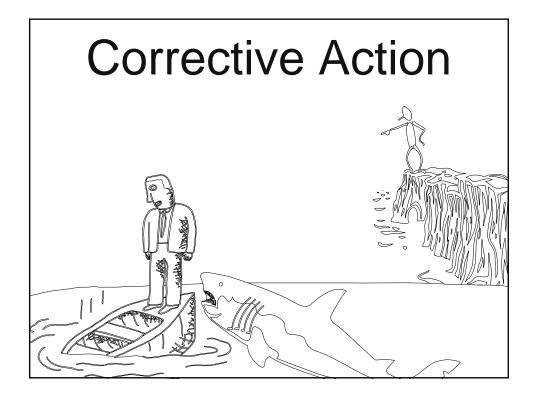

Matrix spike & RPD Control limits


- 1. Test the data for and eliminate outliers before proceeding.
- 2. Calculate the mean and standard deviation of the data.
- 3. Warning limits = Mean ± 2 standard deviations
- 4. Control limits = Mean <u>+</u> 3 standard deviations *NOTE: RPD is a 1-tailed test, so only Mean* +

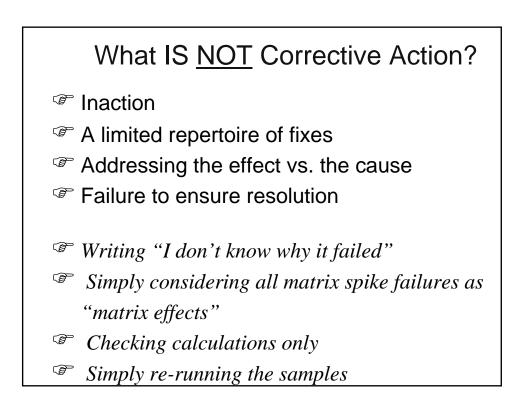
Range Control limits

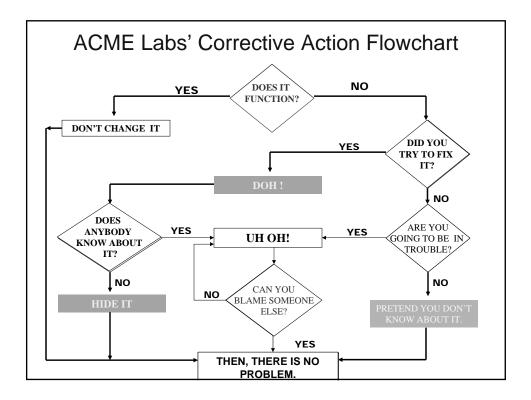

- 1. Test the data for and eliminate outliers before proceeding.
- 2. Calculate the mean of the data.
- 3. Warning limits = 2.51 x Mean
- 4. Control limits = 3.27 x Mean

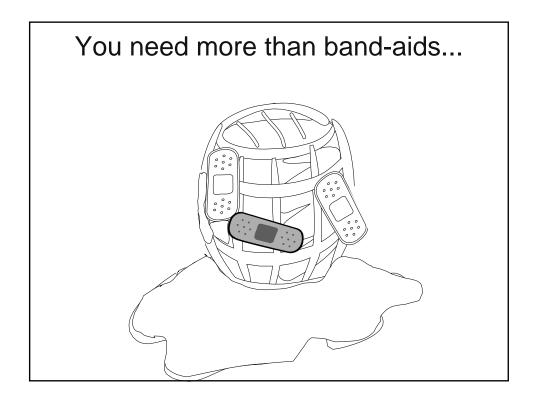




Date	Sample	Replicate	Range	Sample	Replicate	Range	
1	10	10	0	9.9	9.6	0.3	
2	5	4	1	4.6	3.5	1.1	
3	10	10	0	9.6	9.6	0	25% increase in control lim
4	10	10	0	9.5	9.9	0.4	• 19 of 20 runs: control limits
5	8	8	0	7.7	7.9	0.2	
6	11	10	1	10.6	9.9	0.7	higher without rounding
7	8	7	1	7.5	6.6	0.9	 Sample range 4-10 ppm
8	11	11	0	10.7	10.7	0	• 1 ppm max range
9	6	6	0	5.8	5.5	0.3	
10	8	8	0	7.6	7.7	0.1	• correlation 0.922
11	10	10	0	9.6	9.6	0	 average percent increase
12	11	11	0	10.6	10.8	0.2	was 18%
13	11	10	1	10.6	9.8	0.8	1145 1070
14	9	8	1	8.7	7.6	1.1	• Range was -1% to +44%
15	6	6	0	5.6	5.7	0.1	
16	8	8	0	7.6	7.9	0.3	
17	11	10	1	10.8	9.9	0.9	Control Limits vs. Data Reporting
18	9	8	1	8.8	7.5	1.3	Control Links vs. Data Reporting
19	5	5	0	4.8	4.9	0.1	
20	11	10	1	10.9	9.6	1.3	
				145 Can 3.24			
Sum	178	170	8	172	164	10	Europe 25 25 25 25 25 25 25 25 25 25
Mean	9	9	0.40	9	8	0.51	
Warning	2.51	Х	1.004	2.51	X 0.505 =	1.26755	Reporting whole numbers
Control Limit	3.27	Х	1.308	3.27	X 0.505 =	1.65135	
		和自己的			5,00,00,00,00 (SV		
Control limit should be no > 1.74				S. Star		1.68	


Dealing With Outlier Data					
There are many statistical tests available for identifying outliers. One that is relatively easy to use is the Grubbs test.	<u>N</u> 18 19 20	Critical <u>Z</u> 2.65 2.68 2.71			
$\mathbf{Z} = \frac{\text{mean} - \text{questionable data point}}{\text{SD}}$	20 21 22 23	2.71 2.73 2.76 2.78			
 Ignore the sign of the "Z" valueis always " + " 	24 25	2.80 2.82			
➢ For replicates, test <u>only</u> the highest value	26 27	2.84 2.86			
 For spikes, test both the lowest & highest values Include suspect outlier when calculating mean, SD 	28 29 30	2.88 2.89 2.91			
If the calculated Z-value > Critical Z value	35 40	2.91 2.98 3.04			
<i>for that number of data points,</i> then the value is an outlier	50 60	3.13 3.20			

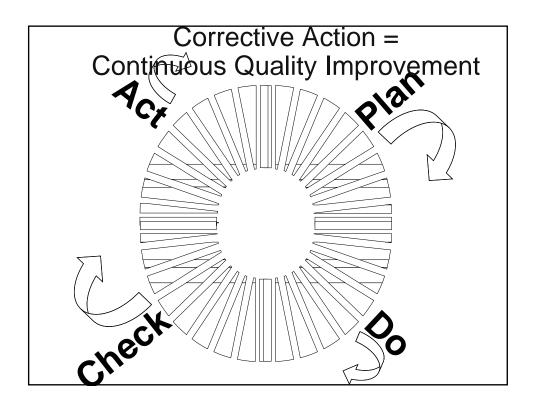


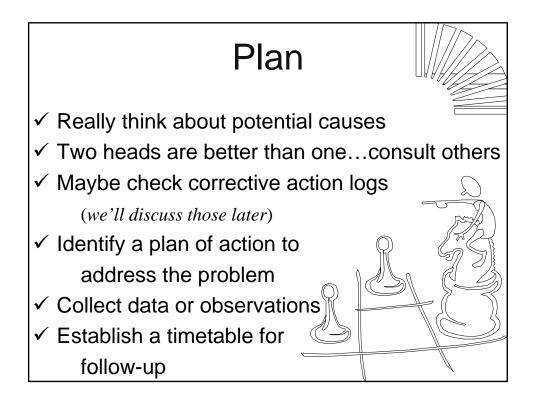


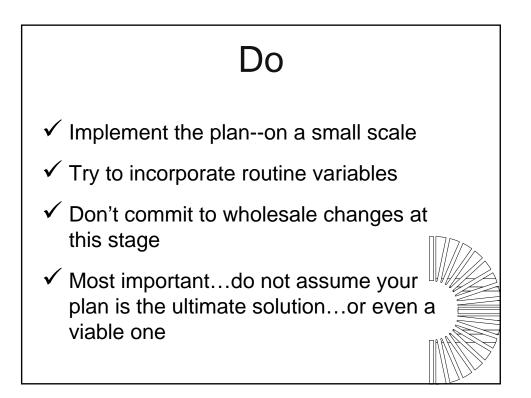
What IS Corrective Action?

- [®] In a nutshell, Corrective Action is anything done in response to an out-of-control situation.
- ⁸ It MUST, however, be designed to <u>identify the</u> <u>reason</u> for the failure, and then <u>correct it</u>.
- ⁹ There should also be a plan to quickly verify that the action taken has the desired effect.

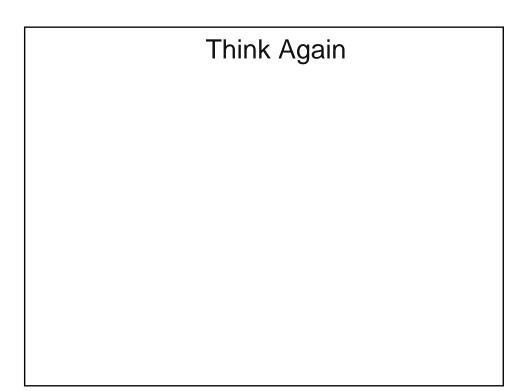
Getting past the Symptoms; Determining & Treating the Illness

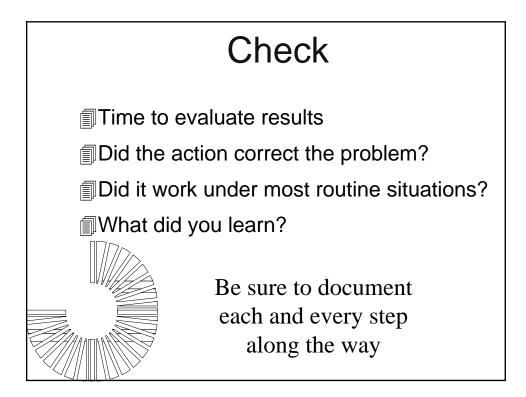

If you're **not** prone to headaches, and suddenly develop a major migraine...

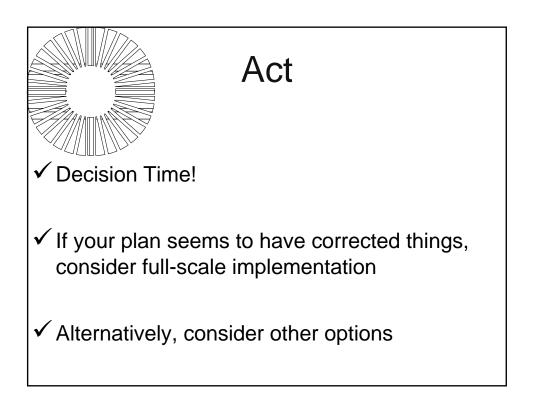

...how would you feel if the doctor simply prescribed ...?


Sure... it might work, but as the one with the problem, YOU don't want to waste time with "maybe" solutions

The first step in Corrective Action is to identify the cause of the problem at hand

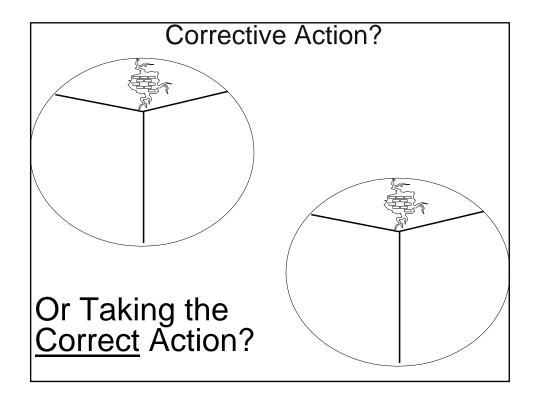


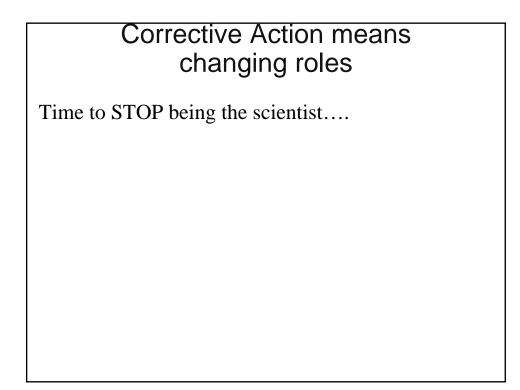




Think you have it covered?

- You've carefully thought out all the angles.
- You've done it a thousand times.
- It comes naturally to you.
- You know what you're doing, its what you've been trained to do your whole life.
- Nothing could possibly go wrong, right ?




	Corrective Action Form
QC failures	
What OC ty	
what QU ty	rpe failure is involved:
- 0	known standardcalibrationmatrix spikereplicateblind
<u>blank</u>	▲ **
blank Blank: what	known standardcalibrationmatrix spikereplicateblind is the LOD?What level was detected in the blank?
blank Blank: what Spikes/repli	known standardcalibrationmatrix spikereplicateblind
blank Blank: what Spikes/repli	known standardcalibrationmatrix spikereplicateblind ; is the LOD? What level was detected in the blank? cates:What are the acceptance criteria? Your result?
<u>blank</u> Blank: what Spikes/repli- If a matrix sp	known standardcalibrationmatrix spikereplicateblind ; is the LOD? What level was detected in the blank? cates:What are the acceptance criteria? Your result?
blank Blank: what Spikes/repli If a matrix sp Known stan	known standardcalibrationmatrix spikereplicateblind is the LOD? What level was detected in the blank? cates: What are the acceptance criteria? Your result? ike: Is this a matrix interference? How do you know that?

Corrective Action Form -2						
Other problems (equipment malfunctions, etc.)						
Symptom(s) (how did you know som						
Corrective Action Taken						
List any activities or checks you perfo	ormed to identify the source and resolve the p	roblem.				
Action/Check Performed	What did you conclude?	Initials	Date			

Corrective Action Form -3

Creating a Corrective Action Plan			
<u>Situation</u>	Corrective Action		
BOD: GGA failing high	 Was initial calibration done properly? Change in seed source? Possibility of nitrification? Qualify data on DMR back to last good GGA. 		
NH ₃ electrode slope < -54 mV	 Check that membrane is intact; no bubbles. Make sure fresh filling solution is used. Is the electrode stablizing normally? too slow? Is the intercept climbing above the LOD? 		
Phosphorus calibration "r" is <<<0.995	 View plotdoes a single standard look funny? Beyond linear range? (about 1 ppm for most) Contaminationespecially at low level? 		

Summary: Corrective Action

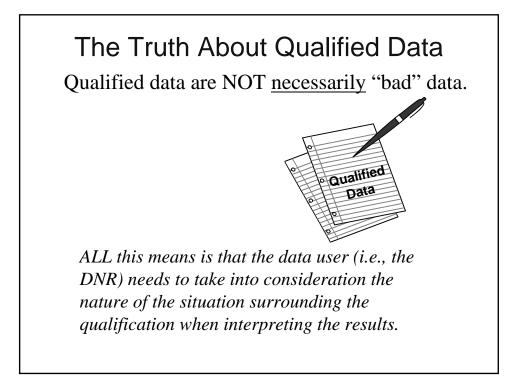
- Identify the source of the problem
- Look beyond the effects...find the <u>cause</u>
- Develop a Game <u>Plan</u> to address the problem
- Implement the plan on a trial basis (<u>Do</u>)
- Evaluate the results of the change (Check)
- Decide whether or not the problem is solved (<u>Act</u>)
- Develop a documentation protocol (trail of bread crumbs)
- Qualify any affected data

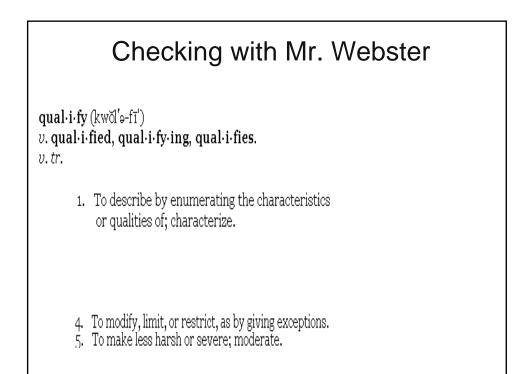
DMR: Laboratory QC Comments Box

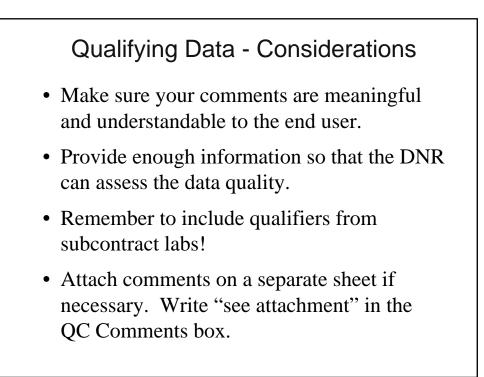
This box is reserved for comments SPECIFICALLY related to laboratory QA/QC problems

Laboratory Quality Control Comments

Report any Quality Control exceedances here Very important in assessing data quality


Laboratory QA/QC Comments Box


Failure to report QC exceedances here is a weakness we are seeing during audits

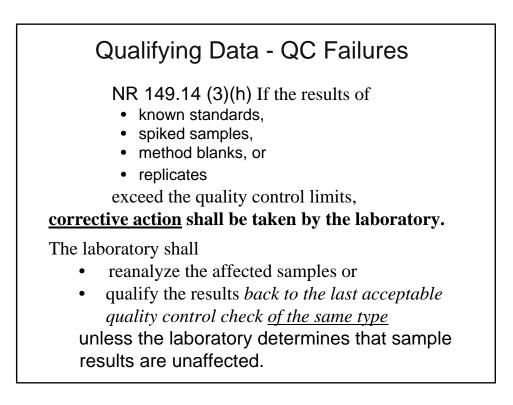

Historically, reporting anything here has been perceived as a "black mark" against the facility

Time to change history!

- (1) You are required to report this information
- (2) If engineers do NOT see information here, we cannot assist you in resolving
 - laboratory problems

NR 149.13 (4) PROCEDURE FOR CORRECTING UNACCEPTABLE REFERENCE SAMPLE RESULTS.

(a) All test categories, except category 18– safe drinking water tests. After 2 consecutive reference sample failures the laboratory shall...


2. Qualify all test results of the analytes in the test or test categories which the laboratory has failed to meet acceptance limits on 2 consecutive reference samples

Example - Reference Samples

Situation: You have failed your BOD reference sample for the 2nd consecutive round of testing.

Resolution:

- 1. Order a 3rd reference sample ASAP
- 2. Identify and correct the problems
- 3. Pass the remedial reference sample!
- 4. Qualify any BOD results on the DMR until you pass a reference sample

Qualifying Data - the "HOWs"

Code definition...

NR 149.04 (21m) "Qualify" means to place a written statement accompanying the test results which identifies anomalies encountered in generating the data.

Reference Sample failures (2 consecutive)...

NR 149.13 (4)(a) 2. Laboratories shall qualify test results by placing a statement in their analytical report [*i.e. the DMR*] stating that the laboratory has failed 2 consecutive reference samples for this analyte or analyte group.

QC Exceedances...

NR 149.14 (3)(h) The results are qualified by reporting that the laboratory analysis was not within the acceptance limits for this test.

QC Examples - Blanks

Situation: Your BOD blank depletions have been unacceptable for the past week. You traced the problem to a new bottle of "Cowboy Bob's" distilled water.

BOD blank failed.

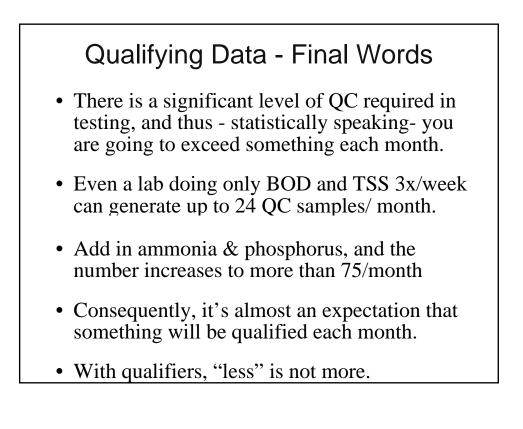
 5/10/01 to 5/17/01 - BOD blank depleted more than is allowed (0.2 mg/L).
 Blank depletions ranged 0.6 to 1.1 mg/L.
 Traced to new bottle of water.

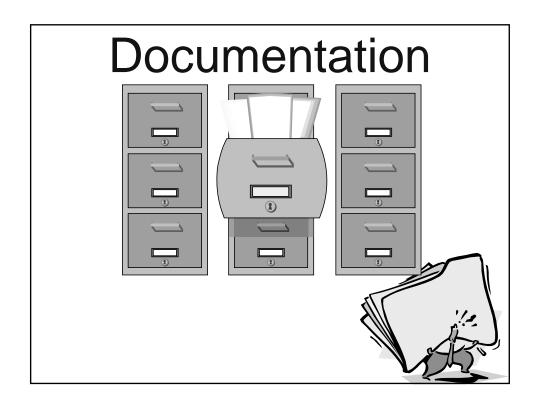
QC Examples - Known Standard

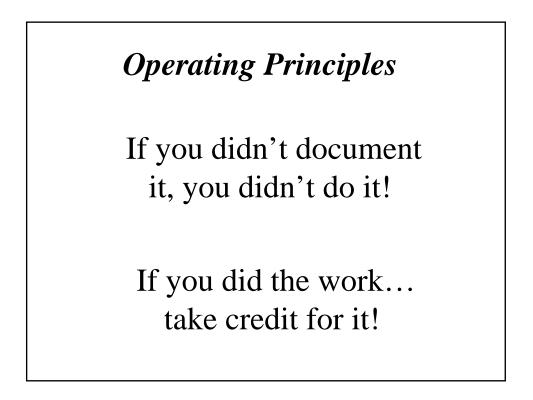
Situation: Your BOD glucose-glutamic acid (GGA) exceeded acceptance criteria. You used a new lot of GGA standard the next day and results were fine.

GGA exceeded acceptance criteria.

 5/7/01 - GGA analyzed this day (235 mg/L) exceeded criteria (198 <u>+</u> 30.5). Repeated GGA with new lot on 5/12/01. Result was 202 mg/L.


QC Examples - Replicates


Situation: Your influent TSS replicate on 5/17/01 exceeded upper control limit.


Replicate failed for TSS.

5/17/01 - Replicate result (5.5 mg/L) for TSS on influent exceeded upper control limit (1.9 mg/L). Replicates are done weekly, so data since 5/10/01 are affected. Heavy rains caused TSS levels to be 3 times typical levels. Did another replicate next day and it passed.

Simple Approach to C General convention:					
Reagent Docume MM/YY means the FIRST day					
Pre-print labels for new chemica of the month					
New Chemical or Reagent Label					
Date received: 4/2/01	Date Expires:6/03				
Received by: <u>J. Smith</u>	Date Opened: <u>4/12/01</u>				
Required Storage: Room temperature, away from light					
Chemical or Reagent: Ascorbic Acid					
New Working Standard Label					
Standard: <i>Phosphorus, 5 µg/mL</i>	Std. Code: <u>100-3</u>				
Date Prepared: <u>8/5/01</u>	Prepared by: <u>A. Smith</u>				
Date Expires: <u>9/5/01</u>	Storage: <u>4°C</u>				
Stock Std Code: 50-25					

Reagent and Standard Control Records

• Full traceability of reagents and standards to the original lot in a logbook

Remember....traceability is in the "eye of the beholder"

- Traceable record of standards and regents used directly on the analysis record (bench sheet)
- Person preparing the reagents or standards, preparation and expiration dates on all reagents and standards

Reagent and Standard Control Records Continued

- Storage conditions
- Certification records provided by the manufacturer with a direct link to the calibration standards

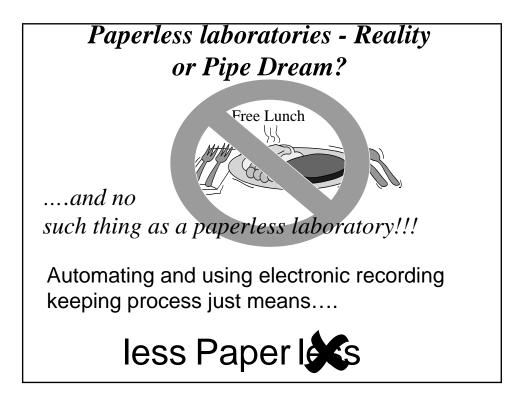
Remember to record the standard code on the certificate so there is a link to the standards logbook!

The Not-so-obvious Things that Need to be Documented

€ Jefferson

City

Items that are often overlooked!


• Corrective actions taken

Remember...you need to be able to **show** auditors or courts what was donenot just tell them!

• Historical QC limits

You may need to defend data 3-4 years old. Could you tell the courts what the QC limits were when the tests were done?

• Performance on blind samples and reference samples

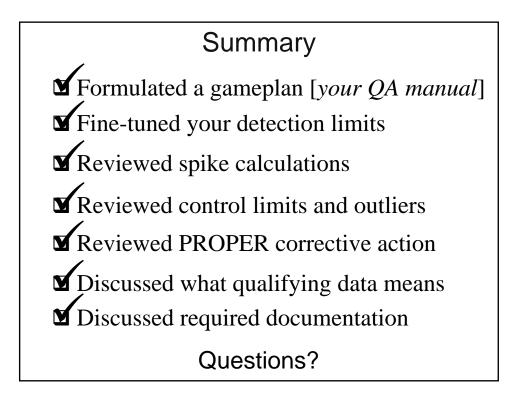
Recommended Practices when using Electronic Record-Keeping Processes

- Automated audit trail when ever records are changed
- Limit records access to a few authorized individuals *e.g., Systems Administrator, Lab Director, etc.*
- Implement a process to document any changes by the systems administrator
- Back-up data daily and use a media that will allow retrieval years later *e.g., Optical storage has a longer life than magnetic media*

Matrix Spike Preparation details

- often overlooked!

What the code says: [NR 149.06 (1)(intro.)]


Records to be retained include but are not limited to ... the following:

 (b) Quality control data for spikes, replicates, method blanks, blind standards reference samples, calibration standards and known standards. Quality control results shall be traceable to all of the associated sample results.

What it means (as it relates to spikes):

An auditor must be able to verify spike concentration, which means

- Concentration of the solution used to prepare spikes
- Information necessary to show that spike solution had not expired.
- The volume of spike solution used
- The volume of sample used
- The final volume of sample + spike
- The sample that was used to prepare the spike

George Bowman (608) 224-6279

Rick Mealy (608) 264-6006

Bill Sonzogni, Director State Laboratory of Hygiene 2601 Agriculture Drive Madison, WI 53718 gtb@mail.slh.wisc.edu

Wisconsin DNR PO Box 7921 Madison, WI 53707

richard.mealy@dnr.state.wi.us

State Lab web address:

http://www.slh.wisc.edu/outreach/

DNR's LabCert homepage:

http://www.dnr.state.wi.us/org/es/science/lc/