

Statistics 101

There are three kinds of lies - lies, damned lies, and ST -Benjamin Disraeli

Statistics are like a bikini.

What they reveal is suggestive, but what they conceal is vital -Aaron Levenstein

"Statistics show:

every two minutes another statistic is created." - *Anonymous*

Calibration Basics

Calibration: Linear Regression is best. Hand

Drawn acceptable but discouraged.

levels: Minimum of 3 plus a blank

Frequency: Daily is best; minimum quarterly

Range: Appropriate for samples

Spacing: Standards should be evenly spaced

Low standard: near but > the LOD; at the LOQ

High standard: Within linear range, set to cover

the highest concentration expected.

To Force or not to Force (the Intercept)

- This is science folks!
- All instruments and analytes are associated with background signal noise which is expected to be non-zero
- Therefore science would indicate that an intercept passing through the origin is UNlikely

So...then why would you do it?

How is the line "forced"

Manual (old school)

Iterative inclusion of fictional (0,0) data points until

- a) the intercept is "effectively" zero
- b) the residuals are minimized

Mathematically

Mathematic regression formula yielding a slope with intercept = 0

$$\frac{\sum (X_{obs}Y_{obs})}{\sum X_{obs}^2} vs. \frac{N\sum (X_{obs}Y_{obs}) - \sum X_{obs}\sum Y_{obs}}{N\sum X_{obs}^2 - (\sum X_{obs})^2}$$

Manual Force Example

	Slope Intercept		
Zero Yint	1.1988	0 ←	
Calc Yint	0.7466	0.76	
10 (0,0) data points	0.7580	0.33	
25 (0,0) data points	0.7603	0.16	
50 (0,0) data points	0.7611	0.10	
100 (0,0) data points	0.7618	0.04	
200 (0,0) data points	0.7621	0.02	
400 (0,0) data points	0.7623	0.01	
800 (0,0) data points	0.7623	0.0057	
1600 (0,0) data points	0.7624	0.0028	

Forced Origin & Residuals

 $X_{residual} = [(Y - Intercept) / slope] - X_{true}$

Back-calculated concentrations.....

<u>X</u>	Y	Calc. Int.	Zero Int	<u>25 θ s'</u>	<u>1600 θs'</u>
0.5	0.5	-0.94	0.66	0.45	0.65
1	1	-0.27	1.31	1.11	1.31
5	5	5.09	6.56	6.37	6.55
10	10	11.79	13.12	12.94	13.11
50	40	51.97	52.47	52.40	52.46
100	75	98.85	98.37	98.44	98.37

Back-calculation= First step in the calculation of residuals. The predicted concentration for a particular response based on the calibration algorithm.

Residual = The difference between True value and the value predicted by the algorithm used.

Summary: Forcing thru the origin

Generally not recommended unless...

- Calibration performed at very low levels.
- Calibration function has been well documented between "zero" and the first level calibration standard.
- There is no change in slope over the range (no break in the curve).

NOTE: Linearity through zero is a statistical assumption and not a rationale for reporting results below the calibration range demonstrated by the analysis of the standards

If you DO decide to use....

- Monitor residuals over the WHOLE range.
- Consider limiting the useable range to that area over which residuals agree very well with known

Brief discussion of Non-Linear Functions

Concentration Response

1 65000 2 140000 5 365000 10 680000 50 2250000

Average CF = 64200 % RSD = 17.3r = 0.9950574

Construction & Verification of Non-linear algorithms

Number of Standards

SW-846 8000B:

...employ five standards for a linear model, a quadratic (2nd order) model requires six standards, 3rd order polynomial requires seven standards.

Verification

- Ensure that calibration verification levels are designed to check regions of non-linearity
- Include one additional calibration verification check standard for each order beyond a linear regression
 - 2nd order polynomial 2 check levels
 - 3rd order polynomial 3 check levels
- Use more standards to characterize the curve!

Higher Order Calibrations Summary

- Make sure you understand the implications of highpowered statistical tools <u>before</u> using them.
- Availability of options does not make them appropriate
- The correlation coefficient is not above reproach!
- Forcing through the origin is generally not appropriate
- Always use the lowest order calibration curve possible
- Use of higher order curves should be justifiable based on the analysis particulars
- Consider altering calibration range to allow a linear fit
- Consider using more standards to characterize a curve
- Include appropriate tools to evaluate the calibration