Dealing with outliers

There are many statistical tests available for identifying outliers. One that is relatively easy to use is the Grubbs test.

$Z = \underline{\text{mean - questionable data point}}$ SD

•	Only test the highest (and/or lowest) value	<u>N</u> 18	Critical
	value	19	2.68
•	Ignore the sign of the "Z" valueis	20	2.71
	always "+"	21	2.73
		22	2.76
•	Include the suspected outlier when	23	2.78
	calculating mean and SD	24	2.80
		25	2.82
		26	2.84
•	If the calculated Z-value is greater than the	27	2.86
	criterion Z value for that number of data	28	2.88
	points, then the value is an outlier	29	2.89
		30	2.91
		35	2.98
		40	3.04
		50	3.13
		60	3.20

Exercise

	DATE	<u>%R</u>
4.6.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.	11/01	81
1. Calculate the mean and SD	11/04	87
Mean = 88.85 SD = 7.278 Limits = $67 - 110.7$	11/07	90
N = 20	11/10	93
	11/13	80
2. Test the <u>high</u> value (110)		82
Z = 110 - 88.85 = 2.9058	11/19	91
7.278	11/22	94
	11/25	83
3. Test the <u>low</u> value (80)		110
Z = 88.85 - 80 = 1.2159	12/01	91
7.278	12/04	92
	12/07	80
4. Discard outliers; since Z_{110} > criterion, 110 is an outlier		88
re-calculate mean and SD	12/13	94
	12/16	92
Mean = 87.737 SD= 5.4553 Limits = $71 - 104$	12/19	83
	12/22	80
	12/25	91
NOTE: Step 4 may also require a re-check for additional outliers	12/28	95

Wis. Dept. of Natural Resources Laboratory Certification Program Regional Lab Auditing Staff