

Design and Calibration of a Nitrate Decision Support Tool for Groundwater Wells in Wisconsin, USA

Paul Juckem¹, Nicholas Corson-Dosch¹, Laura Schachter¹, Christopher Green², Kelsie Ferin³, Eric Booth³, Christopher Kucharik³, Brian Austin⁴, Leon Kauffman⁵

¹U.S. Geological Survey, Upper Midwest Water Science Center; ²U.S. Geological Survey, Water Resources Mission Area; ³University of Wisconsin Dept. of Plant and Agroecosystem Sciences; ⁴Wisconsin Dept. of Natural Resources, Bureau of Drinking Water and Groundwater; ⁵U.S. Geological Survey, New Jersey Water Science Center Funding: Wisconsin Dept. of Natural Resources, USGS Cooperative Matching Funds, USGS Water Availability and Use Science Program

1. Abstract

Problem:

Nitrate is the most wide-spread pollutant in groundwater across Wisconsin. High nitrate concentrations pose risks to infants and fetal development, and are linked to some forms of cancer.

Innovation:

A "reduced-complexity" decision support tool for resource managers to assess how *much* nitrate leaching needs to be reduced to meet a goal, and how long before changes will be observed in well water. Graphical results of quantified uncertainty facilitate understanding of processes & trade-offs.

Scenarios:

Six scenarios to forecast how leaching reductions could drive future concentrations. Scenarios focus on goals (concentration and duration) and the requirements to meet them (leaching reductions).

Forecast Nitrate Concentrations in Wells: How *much* leaching reduction is needed to meet a concentration goal? How *long* before the goal is realized?

a hexbin plot, with warm colors representing greater numbers of values.

Figure 6. Example results for an example well using two forecasting scenarios. Example 1 (top) represents constant leaching from 2023 through 2060. Example 2 (bottom) is an optimization of the leaching rates needed to match a goal concentration of 10 mg-N/L in 2060. The groundwater age distribution (middle graph) is the same for both scenarios (same well).

pfjuckem@usgs.gov

Minimal spatial residuals due

6. Take-home

- Groundwater lag time is critical for understanding effects of "legacy nitrate" and future management on well concentrations Faced with uncertainty -- make changes
- that move in the right direction

7. Enhancements

- Identify where is well water coming from MÓDFLOW/MODPATH for age Contributing areas to ID priority management Speed recovery by identifying and targeting "young nitrate areas" to apply greatest leaching reductions Nutrient transport to streams and rivers • Online user interface Support model references: Green, Ransom, Nolan, Liao, and Harter, 2021. Machine learning predictions of mean ages of shallow well samples in the great lakes basin, USA. Jour. of Hydrol., 126908. https://doi.org/10.1016/j.jhydrol.2021.126908 Kucharik and Brye, 2003. Integrated Blosphere Simulator (IBIS) yield and nitrate loss predictions for Wisconsin
- receiving varied amounts of nitrogen fertilizer. Jour. of Env. Quality 32: 247-68. https://doi.org/10.2134/jeq2003.2470
 Lark, Hendricks, Smith, Pates, and Spawn-lee, 2022. Environmental outcomes of the US renewable fuel standard. Proceedings of the National Academy of Sciences 119 (9): 8. https://doi.org/10.1073/pnas.2101084119
- GW-NDST resources: Juckem, Corson-Dosch, Schachter, Green, Ferin, Booth, Kucharik, Austin, Kauffman, 2024. Design and calibration of a Nitrate Decision Support Tool for groundwater wells in Wisconsin, USA. Environmental Modeling and Software, https://doi.org/10.1016/j.envsoft.2024.105999 Schachter, L.A., Juckem, P.F., Corson-Dosch, N.T., and Green, C.T., 2024, A Groundwater Nitrate Decision Support Tool (GW-NDST) for the State of Wisconsin: U.S. Geological Survey Software Release, https://doi.org/10.5066/P1IFJYEB