
Appendices Enbridge Proposed Line 5 Relocation Project
Final Environmental Impact Statement

APPENDIX Q
USLE TECHNICAL DOCUMENTATION

1 Conceptual Framework
The RUSLE (Revised Universal Soil Loss Equation) model describes the potential for sheet flow erosion on
disturbed land surfaces based on properties of the land slope, local rainfall, soil characteristics, and land
management practices. According to the USDA it is land-use agnostic (USDA, 2024) and is well-suited to
model disturbance from construction sites.

RUSLE is based on a factored equation of several variables of the form:

𝐴 = 𝑅 ⋅ 𝐾 ⋅ 𝐿 ⋅ 𝑆 ⋅ 𝐶 ⋅ 𝑃

Where 𝐴 is soil loss, 𝑅 is a rainfall-runoff erosivity factor, 𝐾 is a soil erodibility factor, 𝐿 is a slope length
factor, 𝑆 is slope steepness, 𝐶 is a coverage management factor, and 𝑃 is a supporting practices factor
(Renard et al., 1991). It is an empirical model which captures the first-order effects of sheet flow and rill
erosion for disturbed landscapes (Renard et al., 1991). The model was developed by the Department of
Agriculture and Soil Conservation Service (Renard et al., 1991).

The model is used widely in regulatory practice, including for DNR stormwater regulation and federal
management.

2 Application
DNR’s existing USLE implementation of USLE takes the form of a macro-enabled excel worksheet suit-
able for evaluation of single construction projects or relatively compact project areas. The project uses
a county-specific rainfall erosivity (𝑅) factor and categorical information about soil texture, as well as
manually-inputted slope and slope length information and land cover/control practices to determine es-
timated sediment loss.

The model relies on a series of empirical equations used depending on user-specified site conditions and
erosion control practices. The model chooses an empirical relationship or set of equations based on cat-
egorical bins from the data to produce locally accurate sediment models.

While this implementation of the USLE model is a relatively straightforward way to handle small-scale
erosion estimation, the mode of interaction scales poorly to large projects like the Enbridge Line 5
Reroute. The reimplemented version applies the logical assessment steps from each factor to a spatial
extent, specifically per-pixel across a raster surface.

the original model can be defined mathematically as:

Υ𝑠 = (𝑅 ⋅ 𝑅𝑎) ⋅ 𝐾 ⋅ 𝑆 ⋅ 𝐿𝑠 ⋅ 𝐶 ⋅ 𝐷𝑠 ⋅ 𝐶𝑓

Υtot =∑
𝑖=𝑛

𝑖
Υ𝑠,𝑖

for phases 𝑖 → 𝑛, where 𝑅𝑖 is the proportion of runoff falling within the time period 𝑖, 𝑅𝑎 is the annual
runoff coefficient, 𝐾 is the soil erodibility factor, 𝑆 is the slope percentage, 𝐿𝑠 is slope length, 𝐶𝑖 is the
land cover coefficient at phase 𝑖, 𝐷𝑠 is the sediment discharge factor, and 𝐶𝑓 𝑖 is the sediment control
factor at phase 𝑖.

If each coefficient is defined in a spatially explicit cell-series, such that parameter 𝑷 is defined as a matrix
where rows 𝑖 and columns 𝑗 correspond to X and Y values in space:

𝑷 =

⎝
⎜⎜
⎜⎛
𝑃1,1
⋮
𝑃𝑖,1

…
⋮
…

…
⋱
…

𝑃(1,𝑗)

⋮
𝑃𝑖,𝑗 ⎠

⎟⎟
⎟⎞

Then the corresponding surface for a step of soil loss is:

𝚼 = 𝑹 ⊙𝑹𝒂 ⊙𝑲 ⊙𝑺 ⊙𝑳𝒔 ⊙𝑪 ⊙𝑫𝒔 ⊙𝑪𝒇

The Hadamard product of the corresponding surfaces. The surface 𝚼 then corresponds to a soil loss es-
timate per pixel 𝚼𝑖,𝑗.

3 Assumptions
In its present implementation, all spatially-explicit parameters are time-invariant. Spatiotemporal evalu-
ation is not impossible but is avoided in the present context for simplicity. Time-varying parameters (for
example land cover) are assumed to be spatially uniform.

This limitation is purely for simplicity and could be overcome at the expense of more data processing,
and some modification of the equation specification.

Another key assumption of the model is that the slope length is the same as the cell size; i.e. each cell
is considered an individual slope. This modifies the behavior of the equation somewhat when assessing
spatial soil loss because of the logic associated with different slope lengths. This assumption was made for
processing expediency, because the classification of slopes and their lengths is a nontrivial exercise when
identifying landscape features and would have added substantially to the processing cost of performing
associated calculations.

4 Processing Pipeline
The USLE equation was practically implemented for spatial analysis using ArcGIS Pro and its python
package ArcPy. The ArcPy script handles computation of the equation values and the logic leading to
them. It takes a series of raster and parameter inputs and converts them to raster output representing the
soil loss in tons per acre for a spatial area.

4.1 Data Sources
Elevation data were sourced from the State Cartographer’s Office (SCO, 2019). DEMs are LiDAR scans
in Ashland, Bayfield, and Iron counties. LiDAR data form the basis of all raster derivatives and datasets
for the analysis. The slope raster used for analysis is derived from the LiDAR data and has the same res-
olution (10m). The analysis uses a K-Factor raster derived from queries of the Soil Survey Geographic
Database (SSURGO) at a depth of 9 to 15 inches (Soil Survey Staff, 2024). The raw map units were con-
verted from polygons to rasters and upsampled to reach 10m resolution during processing. The pipeline
workspace footprint is based on privileged data provided to DNR during analysis for the Environmental
Impact Statement; this footprint (proivded as a .shp file) was used to clip all raster derivatives and make
contributing area polygons and even divisions for sediment discharge estimation. Crossings identified in
Table 1 are from Enbridge’s crossing table, which provides information about each crossing identified by
Enbridge survey staff. Stream polygons used to find areas within 50 horizontal meters of a crossing (see
Section 4.3.1) were digitized by DNR staff to add to existing stream network products previously created
by the Department.

4.2 ArcPy Script
The ArcPy script takes slope, k factor, and soil texture rasters as input, and requires input for start and
end days for a scenario, a land cover condition (e.g. bare soil, mulch), and an erosion control condition.
It composes a series of functions, with the top level function sediment_assessment() as the main entry
point and modeling interface. sediment_assessment() calculates one timestep worth of erosion estima-
tion at a time; that is to say, it integrates erosion for a series of fixed parameters and one defined period
of cumulative rainfall. To vary the other parameters, multiple calls of sediment_assessment() must be
made in series to describe the erosion impacts of those sections separately, then aggregated together into
one layer at the end.

4.2.1 Evaluating landslope factor:
The LS factor evaluation is a conditional fucntion which mathces the slope length and steepness to a
regression equation matching its range and outputting the ls factor. The relations are empirical so the fit
from the numbers is more or less exact.

4.2.2 Evaluating the primary soil loss factor
evaluate_soil_loss_a() takes the start and end date, a k-factor raster, slope raster, and a default k es-
timate.

The start and end date are used to lookup the cumulative precipitation time series for the tool; the tool is
hardcoded to ashland county’s assumed average cumulative rainfall but could be easily extended to look
up other county numbers and get a different cumulative rainfall total from them.

THe primary factor is the raw value of sediment loss for the area in question, without factoring in ground
cover or other values that might modify it somewhat.

4.2.3 SDF Factor Evaluation
SDF is the factor which evaluates the actual amount of sediment discharged from the land surface based
on soil characteristics.

Each cell in the slope raster goes through a logic tree at the beginning of the function to assign categorical
numbers for sand, silt, and clay categories. Then, based on these logical categories, the sediment discharge
factor is calculated using an empirical equation matching the categorical numbers evaluated in the first
branching section.

4.2.4 Final sediment evaluation
Final sediment discharge is evaluated incorporating sediment control practices into the erosion evalua-
tion. The erosion practices remove a flat percentage of the total erosion loss based on performance eval-
uations of stormwater staff.

4.2.5 Wrapper function
All functions are wrapped within a wrapper called sediment_assessment(), which combines the logic
of each of the steps into one easy package which takes in all the assumptions and outputs a neat final
answer without having to write multiple lines every time an evaluation step is necessary.

4.2.6 Model Scenario Runner
The function run_model_scenario() is a wrapper that takes an iterator of specifications for model inputs
and automatically runs and saves a series of model outputs.

4.3 Postprocessing in ArcGIS Pro
Each modeling scenario is output as a .tif file into a directory of the user’s choosing, after which point
each output can be postprocessed. Each phase of the construction is first imported into ArcPro, then is
run through an automated postprocessing routine to create final aggregated clip regions. The aggregation
routine begins with the continuous erosion surfaces generated by the USLE tool (usually for the whole
landscape at a given resolution) and a series of areas to which the outputs are clipped and/or aggregated.
This allows flexibility in the representation of outputs based on the user’s desired aggregation behavior.
Model outputs for both modeling scenarios were clipped to two different spatial aggregation schemes.

After clipping, the model outputs were aggregated based on the ModelBuilder routine shown in Figure 1.
The processing routine first takes the stages of the model as inputs, then converts their rate numbers to
scalar quantities to add together. The converted rasters are summed and reconverted to rates to get the
total erosion for the scenario, which is the primary output. Each of the five rasters is then clipped to the
contributing area polygons. Then all rasters are summed by zone, aggregating the smaller estimates of
erosion into one larger estimate of the erosion for the entire area. This estimate is then converted back
to a rate by dividing out the area of the contributing area in question. Because each contributing area
is associated with a unique ID, the outputs can then be reported as both layers and as excel files which
can later be summarized in other ways. Zonal statistics are also computed for some of the input layers,
specifically the k-factor raster and the slope raster, to determine the average and other metrics of slope
and k factor within each contributing area.

Figure 1: USLE ModelBuilder Postprocessing Routine

4.3.1 Contributing area aggregation scheme
the contributing area aggregation scheme describes the amount of sediment in probable contributing ar-
eas within each ROW. Each contributing area is the region which is within 50 horizontal meters of a
flowline which crosses the right of way for the project. Horizontal flow distance was determined from
analysis in ArcGIS Pro with the flow distance tool. The flow distance tool outputs a raster highlight-
ing the flow distance to pre-set flowlines (digitized from LiDAR for the EIS process), which were then
thresholded with a raster calculator logic function. The 1s in the boolean logic function were then con-
verted to polygons which became the contributing areas to input into the main function described in
Section 4.3. contributing areas derived this way were manually cleaned before being input into the USLE
function to remove any contributing areas which were artifacts from looking at the larger raster surface.
This included contributing areas which were too small, associated with HDD sites, or which were not
directly connected to stream areas.

4.3.2 Milepost-based Aggregation Scheme
The milepost-based aggregation scheme describes the amount of sediment discharge by 110–mile region of
the proposed construction right of way. Milepost polygons were constructed by producing evenly-spaced
points along the centerline of the proposed ROW (spaced at 110 of a mile) and constructing Voroni poly-
gons for the convex hull of the project region. This evenly split the area of the right of way into segments,
with some artifacts in areas with less narrow linearity (for example, around valve stations, access roads,
and HDD pullbacks). Each milepost marker was then labeled similarly to those in Section 4.3.1 and used
as the contributing areas for the main postprocessing function described in Section 4.3. Milepost-based
aggregation allows for continuous estimation. These areas were not directly filtered for HDD locations,
so they include estimates for some areas which will be drilled under.

5 Limitations
Neither modeling scenario will perfectly capture the true sheet flow and rill erosion impact, due to several
limitations with the modeling approach. Real-world impact time will vary in between the short and long
scenarios depending on how long access needs to be maintained to each area of the proposed ROW and
how long it takes crews to work at each individual crossing. For example, HDD sites and adjoining areas
will be exposed to longer periods of disturbance than typical upland areas. Modeling also assumes that all
areas are impacted by the same amount of rainfall over the same target time period, but this will not be
the case during actual construction, where dry or wet spells could increase or decrease the risk of erosion
in certain areas. Soil characteristics are much more site-specific than described by SSURGO, so there is
some variability in this factor as well. The model was also run including areas where slope exceeded 20%
grade, which is the bound of accuracy for USLE. Average rainfall conditions used by the model do not
account for the potential of a rarer, more powerful rain event (for example, a five-year or greater return
period storm) to impact sediment loss (although this case is not covered by regulation, which only covers
up to two-year return interval storms by design). Finally, the modeling tool is limited to factoring in one
standard erosion control practice, which limits its ability to fully characterize the impact given a fixed
erosion control strategy such as the one presented by Enbridge’s EPP and other documentation.

Based on these limitations, outputs of the SLSD/USLE model should be interpreted as relative risk of
erosion for each site based on equal starting conditions and uniform land treatment. The model describes
how each site would behave if they received the same rainfall and other variable disturbance characteris-
tics, with larger numbers signaling a greater sensitivity to erosion in comparison to other sites. The model
is not a prediction of the exact quantity fo sediment that would be eroded by construction activities.

In a regulatory context, USLE is used to determine whether additional erosion control measures are likely
to be necessary for an applicant to meet their obligations under state stormwater standards. This legal
threshold is 5 tons per acre per year of erosion. For the presently described modeling exercise, this thresh-
old was chosen to signify areas of high erosion risk from construction, sufficient for extra attention from
regulators and decision makers when reviewing plans for these areas.

6 Results
Figure shows the distribution of each parameter for each scenario. Most crossings fall into the smallest
part each distribution, and nearly the entire distribution of the short scenario falls in the first part of the
large scenario distribution. Scenario timing and length in general have a large effect on the total erosion
potential for scenarios, which is driven by potential exposure to more rainfall and thus more sediment
discharge events over the course of the construction project.

Figure 2: Histogram of outputs by milepost marker from USLE model runs. Each sum denotes the total
modeled discharge, while each 'Tons per Acre' denotes the discharge rate on a yearly basis.

Total sediment loss over the modeling period closely follows the distribution of contributing area sizes,
with larger contributing areas generally yielding larger amounts of sediment over the course of the sim-
ulation. The top-yielding sediment discharging areas for both scenarios are shown in Table 1. Both sce-
narios have the same top-5 distribution with modified total yields.

The top modeled discharge areas are Unnamed Tributary of (UNT) Silver Creek, UNT Feldcher Creek,
UNT Scott Taylor Creek, and UNT of Scott Taylor Creek. UNT Silver Creek in particular has four cross-
ings in the top 10, likely motivated by the steep slopes surrounding this area’s stream crossings. UNT
Montreal Creek, UNT Krause Creek, UNT Gehrman Creek, and UNT Billy Creek form the top 8 crossings
by sediment discharge. Crossings near Billy Creek in particular have large total discharge values due to
the large area of disturbance in this location.

Table 1: Outputs of USLE Long and Short Model Runs for Crossing Points

grid
code

Feature ID
USGS
Name

Area
(acres)

Total
Discharge

(long,
tons)

Total
Discharge

(short,
tons)

Tons per
Acre

(long)

Tons per
acre

(short)

165 sasv002e UNT of
Silver Creek 0.42 8.36 2.11 19.90 5.01

138 sirb1002e
UNT of
Feldcher
Creek

0.44 8.55 2.15 19.21 4.84

169 sasv018i
UNT of
Scott Taylor
Creek

1.16 22.10 5.56 19.02 4.79

149 sasa071p_x1,
sasa071p_x2

UNT of
Silver Creek 1.24 21.31 5.36 17.25 4.34

179 sasv012e
UNT of
Scott Taylor
Creek

0.44 7.49 1.88 16.83 4.24

195 sasd1005e
UNT of
Montreal
Creek

0.62 10.39 2.61 16.81 4.23

182 sasv008i
UNT of
Scott Taylor
Creek

0.69 11.03 2.78 15.94 4.01

150 sasd1015p UNT of
Silver Creek 1.14 17.49 4.40 15.38 3.87

173 sasv007i
UNT of
Krause
Creek

0.84 12.76 3.21 15.18 3.82

166 sasa007e_x1
UNT of
Gehrman
Creek

0.62 9.16 2.30 14.82 3.73

172 sasv017e
UNT of
Scott Taylor
Creek

0.32 4.74 1.19 14.75 3.71

32 sird009p
UNT of
Vaughn
Creek

0.86 11.95 3.01 13.82 3.48

127 sasc1014p_x2 UNT of
Billy Creek 0.74 10.21 2.57 13.77 3.47

125 sasc028e,
sasc026e

UNT of
Billy Creek 2.82 38.45 9.68 13.65 3.44

104 sasc1006p
UNT of
Brunsweiler
River

0.74 9.94 2.50 13.41 3.38

133 sird1006e
UNT of
Feldcher
Creek

0.22 2.93 0.74 13.18 3.32

76 sase1015i
UNT of
Marengo
River

1.36 17.76 4.47 13.07 3.29

119 WDH-103 Feldcher
Creek 0.94 12.27 3.09 13.07 3.29

10 sasb007i Beartrap
Creek 1.11 14.50 3.65 13.04 3.28

126

sasb1002i,
sasb1004e,
sasc025i_x,
sasc025i

UNT of
Billy Creek 5.34 68.93 17.35 12.91 3.25

147 sasd1017p UNT of
Silver Creek 1.19 14.99 3.77 12.64 3.18

184 sasd1001e,
sasd1002e

UNT of Bad
River 0.91 11.47 2.89 12.54 3.16

52 sasd011p
UNT of
Marengo
River

1.19 14.02 3.53 11.82 2.98

174 sasv016i,
sasv013i

UNT of
Scott Taylor
Creek

1.11 12.44 3.13 11.18 2.81

58 sasa020i
UNT of
Marengo
River

0.12 1.35 0.34 10.91 2.75

19 sasd013i UNT of
White River 1.24 13.28 3.34 10.75 2.71

197 sasd1006e UNT of Bad
River 0.57 6.08 1.53 10.70 2.69

163 sasa006e,
sasa005e

UNT of
Gehrman
Creek

0.15 1.59 0.40 10.69 2.69

117 sasc1003p_x1 UNT of
Trout Brook 0.44 4.51 1.14 10.14 2.55

140 sirb1001e
UNT of
Feldcher
Creek

0.20 1.97 0.50 9.95 2.51

158 sasw011,
sasw011_x2

UNT of
Gehrman
Creek

1.21 11.82 2.97 9.76 2.46

33 sasc040e,
sasc039i

UNT of
Deer Creek 1.21 11.23 2.83 9.28 2.34

1 sasa1008e,
sase006p

UNT of Bay
City Creek,
Bay City
Creek

1.24 11.25 2.83 9.10 2.29

183 sasd1003e UNT of Bad
River 0.22 2.00 0.50 9.00 2.27

141 sirb010p
UNT of
Feldcher
Creek

0.69 6.23 1.57 9.00 2.27

190 sasc043i_x1,
sasc043i_x2

UNT of
Krause
Creek

0.86 7.64 1.92 8.83 2.22

130 sird1004i
UNT of
Feldcher
Creek

0.25 2.14 0.54 8.65 2.18

71 sirc005e UNT of
Tyler Forks 0.07 0.64 0.16 8.57 2.16

131 sird1005i
UNT of
Feldcher
Creek

0.17 1.39 0.35 8.01 2.02

24 sasc041p Rock Creek 1.11 8.13 2.05 7.31 1.84

162 sasa004p
UNT of
Gehrman
Creek

0.86 5.82 1.46 6.72 1.69

189 sasv010i
UNT of
Scott Taylor
Creek

0.30 1.98 0.50 6.66 1.68

38 sasa067e UNT of
Deer Creek 0.89 5.46 1.37 6.14 1.54

42 sasa066i UNT of
Deer Creek 0.59 3.30 0.83 5.57 1.40

146 sasw005 Camp Four
Creek 0.89 4.94 1.24 5.55 1.40

31 sasc037e UNT of
Deer Creek 0.67 3.70 0.93 5.54 1.40

90 sase1023e
UNT of
Marengo
River

0.96 5.27 1.33 5.47 1.38

118 sasc1003p_x2,
sasc1001i

UNT of
Trout Brook 2.05 9.81 2.47 4.78 1.20

89 sasd1022p,
sasd1020e

UNT of
Marengo
River

0.99 4.09 1.03 4.14 1.04

113 sasc1009e_x2,
sasa1028i

UNT of
Brunsweiler
River

0.96 3.92 0.99 4.07 1.02

159 sase005p_x2 UNT of
Silver Creek 0.89 3.43 0.86 3.86 0.97

66 sase1019i
UNT of
Marengo
River

1.24 4.20 1.06 3.40 0.85

9 WDH-100

UNT of
Little
Beartrap
Creek

0.96 2.70 0.68 2.80 0.71

171 sasv006i,
sasv004p

UNT of
Silver Creek 0.84 2.29 0.58 2.72 0.68

59 WDH-102_x1 t,
WDH-102_x2 t

UNT of
Marengo
River

4.62 6.60 1.66 1.43 0.36

196 sasa008p UNT of Bad
River 0.22 0.26 0.07 1.17 0.29

75 sirb012p Tyler Forks 0.57 0.56 0.14 0.99 0.25

69 sase1020p Marengo
River 0.67 0.65 0.16 0.98 0.25

61 WDH-102_x3
UNT of
Marengo
River

0.54 0.52 0.13 0.96 0.24

60 sira001i UNT of
Potato River 0.27 0.20 0.05 0.72 0.18

29 sasc036e UNT of
Rock Creek 0.59 0.35 0.09 0.59 0.15

74 sase1011i
UNT of
Marengo
River

0.82 0.47 0.12 0.58 0.15

62 sase1001e
UNT of
Marengo
River

1.36 0.72 0.18 0.53 0.13

98 sasc1005e,
sasc1004e_x1

UNT of
Brunsweiler
River

0.57 0.27 0.07 0.47 0.12

73 sase1008e Ditch 0.52 0.24 0.06 0.46 0.12

3 WDH-03

UNT of
Little
Beartrap
Creek

0.44 0.20 0.05 0.45 0.11

108 sasa1027e
UNT of
Brunsweiler
River

0.42 0.18 0.05 0.43 0.11

132 sasb1005i UNT of
Billy Creek 0.37 0.15 0.04 0.41 0.10

57 sasc013e,
sasa021e Ditch 0.59 0.24 0.06 0.40 0.10

44 sasa068e UNT of
Deer Creek 0.32 0.13 0.03 0.40 0.10

109 sasc1007e
UNT of
Brunsweiler
River

0.57 0.22 0.06 0.39 0.10

6 sasa1021e

UNT of
Little
Beartrap
Creek

0.49 0.19 0.05 0.37 0.09

20 WDH-107_x1 t
UNT of
Vaughn
Creek

1.14 0.38 0.10 0.33 0.08

2 WDH-02

UNT of
Little
Beartrap
Creek

0.54 0.18 0.04 0.33 0.08

81 WDH-15
UNT of
Marengo
River

0.74 0.22 0.06 0.30 0.07

4 WDH-04

UNT of
Little
Beartrap
Creek

0.79 0.21 0.05 0.27 0.07

56 sasc012e_x1,
sasc012e_x2 Ditch 0.05 0.01 0.00 0.27 0.07

21 sasd013i_x UNT of
White River 0.37 0.10 0.02 0.26 0.07

46 sasd015i
UNT of
Marengo
River

0.37 0.09 0.02 0.23 0.06

23 sasa1020e UNT of
White River 0.22 0.05 0.01 0.23 0.06

7 sasa046e,
sasa047i

Little
Beartrap
Creek,
UNT of
Little
Beartrap
Creek

0.94 0.19 0.05 0.20 0.05

28 sasa016e UNT of
Rock Creek 0.05 0.01 0.00 0.17 0.04

27 sird011i
UNT of
Vaughn
Creek

0.67 0.11 0.03 0.16 0.04

145 saws006
UNT of
Camp Four
Creek

0.10 0.00 0.00 0.02 0.01

65 sase1003e Ditch 0.22 0.00 0.00 0.00 0.00

34
sird006e,
sird004e,
sird005e

UNT of
Vaughn
Creek

1.16 0.00 0.00 0.00 0.00

14 sirc1001e
UNT of
Vaughn
Creek

0.20 0.00 0.00 0.00 0.00

References
Renard, K. G., Foster, G. R., Weesies, G. A., & Porter, J. P. (1991). Comparison of the USLE, RUSLE1.06c, and

RUSLE2 for Application to Highly Disturbed Lands.

SCO. (2019). LiDAR-Derived Countywide DEM for Ashland County, WI 2019. State Cartographer's Office. https://
geodata.wisc.edu/catalog/8544aa82-bcd5-486a-9e65-a0fb7f8129eb

Soil Survey Staff. (2024). Soil Survey Geographic Database (SSURGO) [Computer software]. United States
Department of Agriculture. https://www.nrcs.usda.gov/resources/data-and-reports/soil-survey-geographic-
database-ssurgo

USDA. (2024). Revised Universal Soil Loss Equation (RUSLE) - Welcome to RUSLE1 and RUSLE2. USDA,. https://
www.ars.usda.gov/southeast-area/oxford-ms/national-sedimentation-laboratory/watershed-physical-
processes-research/docs/revised-universal-soil-loss-equation-rusle-welcome-to-rusle-1-and-rusle-2/

https://geodata.wisc.edu/catalog/8544aa82-bcd5-486a-9e65-a0fb7f8129eb
https://geodata.wisc.edu/catalog/8544aa82-bcd5-486a-9e65-a0fb7f8129eb
https://www.nrcs.usda.gov/resources/data-and-reports/soil-survey-geographic-database-ssurgo
https://www.nrcs.usda.gov/resources/data-and-reports/soil-survey-geographic-database-ssurgo
https://www.ars.usda.gov/southeast-area/oxford-ms/national-sedimentation-laboratory/watershed-physical-processes-research/docs/revised-universal-soil-loss-equation-rusle-welcome-to-rusle-1-and-rusle-2/
https://www.ars.usda.gov/southeast-area/oxford-ms/national-sedimentation-laboratory/watershed-physical-processes-research/docs/revised-universal-soil-loss-equation-rusle-welcome-to-rusle-1-and-rusle-2/
https://www.ars.usda.gov/southeast-area/oxford-ms/national-sedimentation-laboratory/watershed-physical-processes-research/docs/revised-universal-soil-loss-equation-rusle-welcome-to-rusle-1-and-rusle-2/

Source Code
1 import arcpy Python
2 import arcpy.sa
3 import arcpy.management
4 import arcpy.conversion
5 import pandas as pd
6 import math
7 import numpy as np
8 import time
9 import typing
10 import os
11
12 start = time.perf_counter()
13 #reading in the rainfall energy factors
14 rfactors = pd.read_csv("rfactors.csv")
15
16 #cutting out only the base series
17 base_series = rfactors.query(
18 "date >=42006 & date <= 42370"
19)
20
21 #adding cols to the base series table
22 base_series['fractional_date'] = (base_series['date'] - 42005) / 365
23 base_series['doy'] = base_series['date'] - 42005
24
25 #reading in kfactors
26 kfactors = pd.read_csv("erodibilityfactors.csv")
27 kfactor_raster = arcpy.Raster("kfactor_raster.tif")
28 kfactor_raster_lexicon = pd.read_excel(r"kfactor_raster_lexicon.csv")
29 conversion_dictionary = kfactor_raster_lexicon.to_dict()
30
31 #read in lc factor constants
32 lcfactors = pd.read_csv("lcfactors.csv")
33
34 #read in intervention factor constants
35 interventionfactors = pd.read_csv("interventionfactors.csv")
36
37 #reading in the raster
38 test_slope = arcpy.Raster("slope_el5_decimal.tif")
39 prototype_slope = arcpy.Raster("prototyping_raster2.tif")
40
41 #reading in the texture raster
42 soiltextureraster = arcpy.Raster(r"soiltextureraster2.tif")
43
44 def preprocess_kfactor_raster(kfactor_raster, conversion_lexicon):
45 information = kfactor_raster.getRasterInfo()
46 information.setPixelType('F64')
47 output_raster = arcpy.Raster(information)

48
49 with arcpy.sa.RasterCellIterator({"rasters":[kfactor_raster]}) as kfactor_cells:
50 for r,c in kfactor_cells:
51 if kfactor_raster[r,c] ==0:
52 output_raster[r,c] = 0.37
53 else:
54 output_raster[r,c] = conversion_lexicon['KfactRF915'][kfactor_raster[r,c] - 1]
55 return(output_raster)
56
57 proctexturerast = preprocess_kfactor_raster(kfactor_raster, conversion_dictionary)
58 proctexturerast.save(r"..\outputs\kfactor_fixed.tif")
59
60 def meters_to_feet(metric_length):
61 return metric_length/0.3048
62
63 def evaluate_ls_factor(slope_raster):

64
 slope_len = meters_to_feet(slope_raster.getRasterInfo().getCellSize()[1]) # cells should be
square, makes this pull easy

65 outras = arcpy.Raster(slope_raster.getRasterInfo())
66
67 print("calculating land slope factors...")
68
69 with arcpy.sa.RasterCellIterator({"rasters":[slope_raster, outras]}) as slope_cells:
70 for r,c in slope_cells:
71 slope = slope_raster[r,c]
72 if slope == 0:
73 outras[r,c] = 0
74 elif slope < 0.01:

75
 outras[r,c] = ((slope_len/72.6)**2) * (65.41 * (slope**2) + 4.56 * slope +
0.065)

76 elif slope < 0.045:

77
 outras[r,c] = ((slope_len/72.6)**2) * (65.41 * (slope**2) + 4.56 * slope +
0.065)

78 elif slope > 0.044 and slope < 0.2:

79
 outras[r,c] = ((slope_len/72.6)**0.5) * (65.41 * (slope**2) + 4.56 * slope +
0.065)

80 elif slope > 0.2:
81 outras[r,c] = ((slope_len/72.6)**0.5) * (65.41 * (0.2**2) + 4.56 * 0.2 + 0.065)
82
83 return(outras)
84
85 # next: Port over the soil loss a value:
86

87
 def eval_soil_loss_a(start_date, end_date, kfactorraster, lc_type, slope_raster,
default_k_estimate = 0.37):

88
89 # this is looking up all the values or getting the info I need
90 start_per_r= base_series[base_series.doy == start_date].iloc[:,1].values[0]
91 end_per_r =base_series[base_series.doy == end_date].iloc[:,1].values[0]

92 period_per_r = end_per_r - start_per_r
93 annual_r_factor = 100
94
95 output_raster = arcpy.Raster(slope_raster.getRasterInfo())
96 ls_factor = evaluate_ls_factor(slope_raster = slope_raster)
97 land_cov_factor = lcfactors.query("lctype == @lc_type").iloc[:,1].values[0]
98
99 print("Evaluating base soil loss...")
100

101
 with arcpy.sa.RasterCellIterator({"rasters":[ls_factor, kfactorraster, output_raster]}) as
ls_cells:

102 for r,c in ls_cells:
103 kval = kfactorraster[r,c]
104 if np.isnan(kval):
105 kval = default_k_estimate

106
 output_raster[r,c] = period_per_r * annual_r_factor * kval * ls_factor[r,c] *
land_cov_factor

107 return(output_raster)
108
109 def eval_sdf(slope_raster, soiltextureraster):
110 # initializing each raster:
111 sand_no = arcpy.Raster(slope_raster.getRasterInfo())
112 silt_no = arcpy.Raster(slope_raster.getRasterInfo())
113 clay_no = arcpy.Raster(slope_raster.getRasterInfo())
114 sdf = arcpy.Raster(slope_raster.getRasterInfo())
115

116
 slope_len = slope_raster.getRasterInfo().getCellSize()[1] #should be square, makes this pull
easy

117 print("Calculating SDF factors...")
118

119
 with arcpy.sa.RasterCellIterator({"rasters":[slope_raster, soiltextureraster, sand_no,
silt_no, clay_no, sdf]}) as slope_cells:

120 for r,c in slope_cells:

121
 if slope_raster[r,c] == 0: #if there's nodata in the slope raster, set all outputs
to 0.

122 sand_no[r,c] = 0
123 silt_no[r,c] = 0
124 clay_no[r,c] = 0
125 sdf[r,c] = 0
126 continue
127 else:
128 for i in range(0,3): #this is presently hardcoded, could maybe be more general
129 if i == 0:
130 if slope_raster[r,c] < 0.045:
131 if slope_len < 25:
132 sand_no[r,c] = 1
133 else:
134 sand_no[r,c] = 2
135 else:

136 if slope_len < 301:
137 sand_no[r,c] = 3
138 else:
139 sand_no[r,c] = 4
140 if i == 1:
141 if slope_len < 20:
142 if slope_raster[r,c] < 0.045:
143 silt_no[r,c] = 1
144 else:
145 silt_no[r,c] = 2
146 else:
147 if slope_raster[r,c] < 0.011:
148 silt_no[r,c] = 3
149 else:
150 if slope_raster[r,c] < 0.1:
151 silt_no[r,c] = 4
152 else:
153 silt_no[r,c] = 5
154 if i == 2:
155 if slope_len < 40:
156 if slope_raster[r,c] < 0.045:
157 clay_no[r,c] = 1
158 else:
159 clay_no[r,c] = 2
160 else:
161 if slope_raster[r,c] < 0.025:
162 clay_no[r,c] = 3
163 else:
164 if slope_raster[r,c] < 0.06:
165 clay_no[r,c] = 4
166 else:
167 if slope_raster[r,c] < 0.011:
168 clay_no[r,c] = 5
169 else:
170 clay_no[r,c] = 6
171

172
 if soiltextureraster[r,c] == 2: #I would rework this to a switch if I were using a
more recent version of python, at least at the top level and maybe at lower levels.

173 if sand_no[r,c] == 1:
174 sdf[r,c] = (16*(0.03*slope_raster[r,c]))
175 elif sand_no[r,c] == 2:
176 sdf[r,c] = (0.95-(5*slope_len/300) * (0.02 - slope_raster[r,c]))
177 elif sand_no[r,c] == 3:

178
 sdf[r,c] = (0.79 - 2.5*(slope_raster[r,c] - 0.09) + 0.004 * slope_len *
slope_raster[r,c])

179 else:

180
 sdf[r,c] = (0.955 + 0.005*(slope_raster[r,c]-0.045)*(slope_len-300) -
0.0001*(slope_len-300))

181 if soiltextureraster[r,c] == 3:

182 if silt_no[r,c] == 1:

183
 sdf[r,c] = (-917.83*(slope_raster[r,c]**2) + 48.312*slope_raster[r,c] +
0.4725)

184 elif silt_no[r,c] == 2:
185 sdf[r,c] = (0.1845*(slope_raster[r,c]**-0.589))
186 elif silt_no[r,c] == 3:

187
 sdf[r,c] =
((0.5317+60.49*slope_raster[r,c])*slope_len**(8.65*slope_raster[r,c]-0.1653))

188 elif silt_no[r,c] == 4:
189 sdf[r,c] = (0.66*slope_len**(0.0834)-4.2*(slope_raster[r,c]-0.04))
190 elif silt_no[r,c] == 5:
191 sdf[r,c] =(0.3682*(slope_raster[r,c]**0.1649))
192 if soiltextureraster[r,c] == 4:
193 if clay_no[r,c] == 1:

194
 sdf[r,c] =(0.206*math.log(slope_raster[r,c])+1.7385 +
0.00005*slope_len+10*(slope_raster[r,c] - 0.02) - (4*slope_raster[r,c]-0.04))

195 elif clay_no[r,c] == 2:

196
 sdf[r,c] =(28.087*slope_raster[r,c]**2-8.0411*slope_raster[r,c]+1.3012+5/
slope_len-4*(slope_raster[r,c]-0.04))

197 elif clay_no[r,c] == 3:

198
 sdf[r,c]
=(1.1038*slope_len**(-0.095)+28.48*(slope_raster[r,c]-0.002)-0.0006*slope_len)

199 elif clay_no[r,c] == 4:

200
 sdf[r,c]
=((1.5038+3.914*(slope_raster[r,c]-0.025))*slope_len**(-0.045-1.8*slope_raster[r,c]))

201 elif clay_no[r,c] == 5:

202
 sdf[r,c]
=((1.6408-13.342*(slope_raster[r,c]-0.06))*slope_len**(-0.153+1.59*(slope_raster[r,c]-0.06)))

203 elif clay_no[r,c] == 6:

204
 sdf[r,c]
=((0.9737-5.45*(slope_raster[r,c]-0.11))*slope_len**(-0.059+1.1*(slope_raster[r,c]-0.11)))

205 if soiltextureraster[r,c] == 0: # treat as a 4, which is the default estimate
206 if clay_no[r,c] == 1:

207
 sdf[r,c] =(0.206*math.log(slope_raster[r,c])+1.7385 +
0.00005*slope_len+10*(slope_raster[r,c] - 0.02) - (4*slope_raster[r,c]-0.04))

208 elif clay_no[r,c] == 2:

209
 sdf[r,c] =(28.087*slope_raster[r,c]**2-8.0411*slope_raster[r,c]+1.3012+5/
slope_len-4*(slope_raster[r,c]-0.04))

210 elif clay_no[r,c] == 3:

211
 sdf[r,c]
=(1.1038*slope_len**(-0.095)+28.48*(slope_raster[r,c]-0.002)-0.0006*slope_len)

212 elif clay_no[r,c] == 4:

213
 sdf[r,c]
=((1.5038+3.914*(slope_raster[r,c]-0.025))*slope_len**(-0.045-1.8*slope_raster[r,c]))

214 elif clay_no[r,c] == 5:

215
 sdf[r,c]
=((1.6408-13.342*(slope_raster[r,c]-0.06))*slope_len**(-0.153+1.59*(slope_raster[r,c]-0.06)))

216 elif clay_no[r,c] == 6:

217
 sdf[r,c]
=((0.9737-5.45*(slope_raster[r,c]-0.11))*slope_len**(-0.059+1.1*(slope_raster[r,c]-0.11)))

218

219 return(sdf)
220
221 # evaluating the final sediment runoff factor based on the sdf & pev. information:
222 def eval_final_sediment(sdf_raster, soil_loss_a_raster, interventionfactor, rasterinfo):
223
224 output_raster = arcpy.Raster(rasterinfo)
225
226 print("Evaluating final sediment value...")
227

228
 with arcpy.sa.RasterCellIterator({"rasters":[sdf_raster, soil_loss_a_raster,
output_raster]}) as slope_cells:

229 if interventionfactor == "":
230 for r,c in slope_cells:
231 output_raster[r,c] = sdf_raster[r,c] * soil_loss_a_raster[r,c]
232 else:

233
 effectiveness = interventionfactors.query("Intervention ==
@interventionfactor").iloc[:,1].values[0]

234 for r,c in slope_cells:

235
 output_raster[r,c] = (1-effectiveness) * soil_loss_a_raster[r,c] *
sdf_raster[r,c]

236 return(output_raster)
237
238 # a wrapper for the other functions to roll the whole thing into one call easily.

239
 def sediment_assessment(slope_raster, start_date, end_date, soiltextureraster, kfactorraster,
lc_type, interventionfactor):

240
241 raster_information = slope_raster.getRasterInfo()
242
243 soil_loss_a = eval_soil_loss_a(start_date, end_date, kfactorraster, lc_type, slope_raster)
244 sdf = eval_sdf(slope_raster, soiltextureraster)
245 final_answer = eval_final_sediment(
246 soil_loss_a_raster= soil_loss_a,
247 sdf_raster=sdf,
248 interventionfactor= interventionfactor,
249 rasterinfo= raster_information)
250 return(final_answer)

	Conceptual Framework
	Application
	Assumptions
	Processing Pipeline
	Data Sources
	ArcPy Script
	Evaluating landslope factor:
	Evaluating the primary soil loss factor
	SDF Factor Evaluation
	Final sediment evaluation
	Wrapper function
	Model Scenario Runner

	Postprocessing in ArcGIS Pro
	Contributing area aggregation scheme
	Milepost-based Aggregation Scheme

	Limitations
	Results
	References
	Source Code

